ترغب بنشر مسار تعليمي؟ اضغط هنا

Multimode interferometry for entangling atoms in quantum networks

174   0   0.0 ( 0 )
 نشر من قبل Thomas Barrett Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We bring together a cavity-enhanced light-matter interface with a multimode interferometer (MMI) integrated onto a photonic chip and demonstrate the potential of such hybrid systems to tailor distributed entanglement in a quantum network. The MMI is operated with pairs of narrowband photons produced a priori deterministically from a single 87Rb atom strongly coupled to a high-finesse optical cavity. Non-classical coincidences between photon detection events show no loss of coherence when interfering pairs of these photons through the MMI in comparison to the two-photon visibility directly measured using Hong-Ou-Mandel interference on a beam splitter. This demonstrates the ability of integrated multimode circuits to mediate the entanglement of remote stationary nodes in a quantum network interlinked by photonic qubits.



قيم البحث

اقرأ أيضاً

125 - Xiao-Feng Shi 2021
Neutral atom arrays are promising for large-scale quantum computing especially because it is possible to prepare large-scale qubit arrays. An unsolved issue is how to selectively excite one qubit deep in a 3D atomic array to Rydberg states. In this w ork, we show two methods for this purpose. The first method relies on a well-known result: in a dipole transition between two quantum states driven by two off-resonant fields of equal strength but opposite detunings $pmDelta$, the transition is characterized by two counter-rotating Rabi frequencies $Omega e^{pm iDelta t}$~[or $pmOmega e^{pm iDelta t}$ if the two fields have a $pi$-phase difference]. This pair of detuned fields lead to a time-dependent Rabi frequency $2Omega cos(Delta t)$~[or $2iOmega sin(Delta t)$], so that a full transition between the two levels is recovered. We show that when the two detuned fields are sent in different directions, one atom in a 3D optical lattice can be selectively addressed for Rydberg excitation, and when its state is restored, the state of any nontarget atoms irradiated in the light path is also restored. Moreover, we find that the Rydberg excitation by this method can significantly suppress the fundamental blockade error of a Rydberg gate, paving the way for a high-fidelity entangling gate with commonly used quasi-rectangular pulse that is easily obtained by pulse pickers. Along the way, we find a second method for single-site Rydberg addressing in 3D, where a selected target atom can be excited to Rydberg state while preserving the state of any nontarget atom due to a spin echo sequence. The capability to selectively address a target atom in 3D atomic arrays for Rydberg excitation makes it possible to design large-scale neutral-atom information processor based on Rydberg blockade.
A quantum algorithm can be decomposed into a sequence consisting of single qubit and 2-qubit entangling gates. To optimize the decomposition and achieve more efficient construction of the quantum circuit, we can replace multiple 2-qubit gates with a single global entangling gate. Here, we propose and implement a scalable scheme to realize the global entangling gates on multiple $yb$ ion qubits by coupling to multiple motional modes through external fields. Such global gates require simultaneously decoupling of multiple motional modes and balancing of the coupling strengths for all the qubit-pairs at the gate time. To satisfy the complicated requirements, we develop a trapped-ion system with fully-independent control capability on each ion, and experimentally realize the global entangling gates. As examples, we utilize them to prepare the Greenberger-Horne-Zeilinger (GHZ) states in a single entangling operation, and successfully show the genuine multi-partite entanglements up to four qubits with the state fidelities over $93.4%$.
Generative adversarial networks (GANs) are one of the most widely adopted semisupervised and unsupervised machine learning methods for high-definition image, video, and audio generation. In this work, we propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN) that overcomes some limitations of previously proposed quantum GANs. Leveraging the entangling power of quantum circuits, EQ-GAN guarantees the convergence to a Nash equilibrium under minimax optimization of the discriminator and generator circuits by performing entangling operations between both the generator output and true quantum data. We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor. By adversarially learning efficient representations of quantum states, we prepare an approximate quantum random access memory (QRAM) and demonstrate its use in applications including the training of quantum neural networks.
111 - A. Hopper , P. F. Barker 2020
Near-field, radially symmetric optical potentials centred around a levitated nanosphere can be used for sympathetic cooling and for creating a bound nanosphere-atom system analogous to a large molecule. We demonstrate that the long range, Coulomb-lik e potential produced by a single blue detuned field increases the collisional cross-section by eight orders of magnitude, allowing fast sympathetic cooling of a trapped nanosphere to microKelvin temperatures using cold atoms. By using two optical fields to create a combination of repulsive and attractive potentials, we demonstrate that a cold atom can be bound to a nanosphere creating a new levitated hybrid quantum system suitable for exploring quantum mechanics with massive particles.
The periodic changes in physical and chemical properties of the chemical elements is caused by the periodic change of the ionization energies. The ionization energy of each element is constant and this manifests itself in the periodic table. However, we show that the ionization energies can be dramatically changed, when atoms are placed in a photonic crystal consisting of materials with a highly tunable refractive index and voids. The tunability of these materials gives rise to the tunability of the ionization energies over a wide range. This allows one to come beyond the limitations put on by the periodic table on physical and chemical processes, and can open up new horizons in synthesizing exceptional chemical compounds that could be used in pharmaceutical and other medical-related activities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا