ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Spin Amplification Using a Beam Splitter

106   0   0.0 ( 0 )
 نشر من قبل Chengyu Yan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report spin amplification using a capacitive beam splitter in n-type GaAs where the spin polarization is monitored via transverse electron focusing measurement. It is shown that partially spin-polarized current injected by the emitter can be precisely controlled and the spin polarization associated with it can be amplified by the beam splitter, such that a considerably high spin polarization of around 50% can be obtained. Additionally, the spin remains coherent as shown by the observation of quantum interference. Our results illustrate that spin polarization amplification can be achieved in materials without strong spin-orbit interaction.

قيم البحث

اقرأ أيضاً

120 - Audrey Cottet 2012
This article discusses how to demonstrate the entanglement of the split Cooper pairs produced in a double-quantum-dot based Cooper pair beam splitter (CPS), by performing the microwave spectroscopy of the CPS. More precisely, one can study the DC cur rent response of such a CPS to two on-phase microwave gate irradiations applied to the two CPS dots. Some of the current peaks caused by the microwaves show a strongly nonmonotonic variation with the amplitude of the irradiation applied individually to one dot. This effect is directly due to a subradiance property caused by the coherence of the split pairs. Using realistic parameters, one finds that this effect has a measurable amplitude.
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategi es for their growth. Here we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at $theta= 60^circ$, electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The splitted electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy of an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model that suggests that electronic beam splitters can generally be realized with crossed GNRs.
We propose an approach allowing the computation of currents and their correlations in interacting multiterminal mesoscopic systems involving quantum dots coupled to normal and/or superconducting leads. The formalism relies on the expression of branch ing currents and noise crossed correlations in terms of one- and two-particle Greens functions for the dots electrons, which are then evaluated self-consistently within a conserving approximation. We then apply this to the Cooper-pair beam-splitter setup recently proposed [L. Hofstetter et al. Nature (London) 461 960 (2009); Phys. Rev. Lett. 107 136801 (2011); L. G. Herrmann et al. Phys. Rev. Lett. 104 026801 (2010)], which we model as a double quantum dot with weak interactions, connected to a superconducting lead and two normal ones. Our method not only enables us to take into account a local repulsive interaction on the dots, but also to study its competition with the direct tunneling between dots. Our results suggest that even a weak Coulomb repulsion tends to favor positive current cross correlations in the antisymmetric regime (where the dots have opposite energies with respect to the superconducting chemical potential).
We consider a double quantum dot coupled to two normal leads and one superconducting lead, modeling the Cooper pair beam splitter studied in two recent experiments. Starting from a microscopic Hamiltonian we derive a general expression for the branch ing current and the noise crossed correlations in terms of single and two-particle Greens function of the dot electrons. We then study numerically how these quantities depend on the energy configuration of the dots and the presence of direct tunneling between them, isolating the various processes which come into play. In absence of direct tunneling, the antisymmetric case (the two levels have opposite energies with respect to the superconducting chemical potential) optimizes the Crossed Andreev Reflection (CAR) process while the symmetric case (the two levels have the same energies) favors the Elastic Cotunneling (EC) process. Switching on the direct tunneling tends to suppress the CAR process, leading to negative noise crossed correlations over the whole voltage range for large enough direct tunneling.
The typical bulk model describing 2D topological insulators (TI) consists of two types of spin-orbit terms, the so-called Dirac term which induces out-of plane spin polarization and the Rashba term which induces in-plane spin polarization. We show th at for some parameters of the Fermi energy, the beam splitter device built on 2D TIs can achieve higher in-plane spin polarization than one built on materials described by the Rashba model itself. Further, due to high tunability of the electron density and the asymmetry of the quantum well, spin polarization in different directions can be obtained. While in the normal (topologically trivial) regime the in-plane spin polarization would dominate, in the inverted regime the out-of-plane polarization is more significant not only in the band gap but also for small Fermi energies above the gap. Further, we suggest a double beam splitter scheme, to measure in-plane spin current all electrically. Although we consider here as an example HgTe/CdTe quantum wells, this scheme could be also promising for InAs/GaSb QWs where the in- and out-of-plane polarization could be achieved in a single device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا