ترغب بنشر مسار تعليمي؟ اضغط هنا

Delayed coalescence of surfactant containing sessile droplets

86   0   0.0 ( 0 )
 نشر من قبل Myrthe Bruning
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When two sessile drops of the same liquid touch, they merge into one drop, driven by capillarity. However, the coalescence can be delayed, or even completely stalled for a substantial period of time, when the two drops have different surface tensions, despite being perfectly miscible. A temporary state of non-coalescence arises, during which the drops move on their substrate, only connected by a thin neck between them. Existing literature covers pure liquids and mixtures with low surface activities. In this paper, we focus on the case of large surface activities, using aqueous surfactant solutions with varying concentrations. It is shown that the coalescence behavior can be classified into three regimes that occur for different surface tensions and contact angles of the droplets at initial contact. However, not all phenomenology can be predicted from surface tension contrast or contact angles alone, but strongly depends on the surfactant concentrations as well. This reveals that the merging process is not solely governed by hydrodynamics and geometry, but also depends on the molecular physics of surface adsorption.



قيم البحث

اقرأ أيضاً

The internal dynamics during the coalescence of a sessile droplet and a subsequently deposited impacting droplet, with either identical or distinct surface tension, is studied experimentally in the regime where surface tension is dominant. Two color high-speed cameras are used to capture the rapid internal flows and associated mixing from both side and bottom views simultaneously by adding an inert dye to the impacting droplet. Given sufficient lateral separation between droplets of identical surface tension, a robust surface jet is identified on top of the coalesced droplet. Image processing shows this jet is the result of a surface flow caused by the impact inertia and an immobile contact line. By introducing surface tension differences between the coalescing droplets, the surface jet can be either enhanced or suppressed via a Marangoni flow. The influence of the initial droplet configuration and relative surface tension on the long-term dynamics and mixing efficiency, plus the implications for emerging applications such as reactive inkjet printing, are also considered.
The present article experimentally and theoretically probes the evaporation kinetics of sessile saline droplets. Observations reveal that presence of solvated ions leads to modulated evaporation kinetics, which is further a function of surface wettab ility. On hydrophilic surfaces, increasing salt concentration leads to enhanced evaporation rates, whereas on superhydrophobic surfaces, it first enhances and reduces with concentration. Also, the nature and extents of the evaporation regimes constant contact angle or constant contact radius are dependent on the salt concentration. The reduced evaporation on superhydrophobic surfaces has been explained based on observed via microscopy crystal nucleation behaviour within the droplet. Purely diffusion driven evaporation models are noted to be unable to predict the modulated evaporation rates. Further, the changes in the surface tension and static contact angles due to solvated salts also cannot explain the improved evaporation behaviour. Internal advection is observed using PIV to be generated within the droplet and is dependent on the salt concentration. The advection dynamics has been used to explain and quantify the improved evaporation behaviour by appealing to the concept of interfacial shear modified Stefan flows around the evaporating droplet. The analysis leads to accurate predictions of the evaporation rates. Further, another scaling analysis has been proposed to show that the thermal and solutal Marangoni advection within the system leads to the advection behaviour. The analysis also shows that the dominant mode is the solutal advection and the theory predicts the internal circulation velocities with good accuracy. The findings may be of importance to microfluidic thermal and species transport systems.
100 - Xi Xia , Chengming He , 2018
This letter presents a scaling theory of the coalescence of two viscous spherical droplets. An initial value problem was formulated and analytically solved for the evolution of the radius of a liquid neck formed upon droplet coalescence. Two asymptot ic solutions of the initial value problem reproduce the well-known scaling relations in the viscous and inertial regimes. The viscous-to-inertial crossover experimentally observed by Paulsen et al. [Phys. Rev. Lett. 106, 114501 (2011)] manifests in the theory, and their fitting relation, which shows collapse of data of different viscosities onto a single curve, is an approximation to the general solution of the initial value problem.
We numerically investigate both single and multiple droplet dissolution with droplets consisting of lighter liquid dissolving in a denser host liquid. The significance of buoyancy is quantified by the Rayleigh number Ra which is the buoyancy force ov er the viscous damping force. In this study, Ra spans almost four decades from 0.1 to 400. We focus on how the mass flux, characterized by the Sherwood number Sh, and the flow morphologies depend on Ra. For single droplet dissolution, we first show the transition of the Sh(Ra) scaling from a constant value to $Shsim Ra^{1/4}$, which confirms the experimental results by Dietrich et al. (J. Fluid Mech., vol. 794, 2016, pp. 45--67). The two distinct regimes, namely the diffusively- and the convectively-dominated regime, exhibit different flow morphologies: when Ra>=10, a buoyant plume is clearly visible which contrasts sharply to the pure diffusion case at low Ra. For multiple droplet dissolution, the well-known shielding effect comes into play at low Ra so that the dissolution rate is slower as compared to the single droplet case. However, at high Ra, convection becomes more and more dominant so that a collective plume enhances the mass flux, and remarkably the multiple droplets dissolve faster than a single droplet. This has also been found in the experiments by Laghezza et al. (Soft Matter, vol. 12, 2016, pp. 5787--5796). We explain this enhancement by the formation of a single, larger plume rather than several individual plumes. Moreover, there is an optimal Ra at which the enhancement is maximized, because the single plume is narrower at larger Ra, which thus hinders the enhancement. Our findings demonstrate a new mechanism in collective droplet dissolution, which is the merging of the plumes, that leads to non-trivial phenomena, contrasting the shielding effect.
70 - Xi Xia , Chengming He , Dehai Yu 2017
This study employs an improved volume of fluid method and adaptive mesh refinement algorithm to numerically investigate the internal jet-like mixing upon the coalescence of two initially stationary droplets of unequal sizes. The emergence of the inte rnal jet is attributed to the formation of a main vortex ring, as the jet-like structure shows a strong correlation with the main vortex ring inside the merged droplet. By tracking the evolution of the main vortex ring together with its circulation, we identified two mechanisms that are essential to the internal-jet formation: the vortex-ring growth and the vortex-ring detachment. Recognizing that the manifestation of the vortex-ring-induced jet physically relies on the competition between the convection and viscous dissipation of the vortex ring, we further developed and substantiated a vortex-ring-based Reynolds number criterion to interpret the occurrence of the internal jet at various Ohnesorge numbers and size ratios. For the merged droplet with apparent jet formation, the average mixing rate after jet formation increases monotonically with the vortex-ring Reynolds number, which therefore serves as an approximate measure of the jet strength. In this respect, stronger internal jet is responsible for enhanced mixing of the merged droplet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا