ﻻ يوجد ملخص باللغة العربية
Accurately measuring the neutron beam polarization of a high flux, large area neutron beam is necessary for many neutron physics experiments. The Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source (SNS) is a pulsed neutron beam that was polarized with a supermirror polarizer for the NPDGamma experiment. The polarized neutron beam had a flux of $sim10^9$ neutrons per second per cm$^2$ and a cross sectional area of 10$times$12~cm$^2$. The polarization of this neutron beam and the efficiency of a RF neutron spin rotator installed downstream on this beam were measured by neutron transmission through a polarized $^{3}$He neutron spin-filter. The pulsed nature of the SNS enabled us to employ an absolute measurement technique for both quantities which does not depend on accurate knowledge of the phase space of the neutron beam or the $^{3}$He polarization in the spin filter and is therefore of interest for any experiments on slow neutron beams from pulsed neutron sources which require knowledge of the absolute value of the neutron polarization. The polarization and spin-reversal efficiency measured in this work were done for the NPDGamma experiment, which measures the parity violating $gamma$-ray angular distribution asymmetry with respect to the neutron spin direction in the capture of polarized neutrons on protons. The experimental technique, results, systematic effects, and applications to neutron capture targets are discussed.
The neutron polarization of the NG-C beamline at the NIST Center for Neutron Research was measured as part of the aCORN neutron beta decay experiment. Neutron transmission through a polarized 3He spin filter cell was recorded while adiabatic fast pas
We are developing a neutron polarizer with polarized $^3$He gas, referred to as a $^3$He spin filter, based on the Spin Exchange Optical Pumping (SEOP) for polarized neutron scattering experiments at Materials and Life Science Experimental Facility (
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using a method of an alpha-gamma counter. The method involves only the counting of measured rates and is independent of neutro
The measurement of the neutron capture cross-section as a function of energy in the thermal range requires a precise knowledge of the absolute neutron flux. In this paper a new method of calibrating a thermal neutron beam using the controlled activat
We have measured the spin structure functions $g_1$ and $g_2$ of $^3$He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.07 GeV off a polarized $^3$He target at a 15.5$^{circ}$ scattering a