ﻻ يوجد ملخص باللغة العربية
A widely used approximation to the exchange-correlation functional in density functional theory is the local density approximation (LDA), typically derived from the properties of the homogeneous electron gas (HEG). We previously introduced a set of alternative LDAs constructed from one-dimensional systems of one, two, and three electrons that resemble the HEG within a finite region. We now construct a HEG-based LDA appropriate for spinless electrons in one dimension and find that it is remarkably similar to the finite LDAs. As expected, all LDAs are inadequate in low-density systems where correlation is strong. However, exploring the small but significant differences between the functionals, we find that the finite LDAs give better densities and energies in high-density exchange-dominated systems, arising partly from a better description of the self-interaction correction.
Potential functional approximations are an intriguing alternative to density functional approximations. The potential functional that is dual to the Lieb density functional is defined and properties given. The relationship between Thomas-Fermi theory
In the framework of density functional theory, scaling and the virial theorem are essential tools for deriving exact properties of density functionals. Preexisting mathematical difficulties in deriving the virial theorem via scaling for periodic syst
We introduce a new functional for simulating ground-state and time-dependent electronic systems within density-functional theory. The functional combines an expression for the exact Kohn-Sham (KS) potential in the limit of complete electron localizat
The development of semilocal models for the kinetic energy density (KED) is an important topic in density functional theory (DFT). This is especially true for subsystem DFT, where these models are necessary to construct the required non-additive embe
An alternative type of approximation for the exchange and correlation functional in density functional theory is proposed. This approximation depends on a variable $u$ that is able to detect inhomogeneities in the electron density $rho$ without using