ﻻ يوجد ملخص باللغة العربية
Christodoulou and Rovelli have shown that the maximal interior volume of a Schwarzschild black hole linearly grows with time. Recently, their conclusion has been extended to the Reissner{-}Nordstr$ddot{text{o}}$m and Kerr black holes. Meanwhile, the entropy of interior volume in a Schwarzschild black hole has also been calculated. Here, a new method calculating the entropy of interior volume of the black hole is given and it can be used in more general cases. Using this method, the entropy associated with the volume of a Kerr black hole is calculated and it is found that the entropy is proportional to the Bekenstein-Hawking entropy in the early stage of black hole evaporation. Using the differential form, the entropy of interior volume in a Schwarzschild black hole is recalculated. It is shown that the proportionality coefficient between the entropy and the Bekenstein-Hawking entropy is half of that given in the previous literature. Moreover, the black hole information paradox is brought up again and discussed.
The investigation about the volume of a black hole is closely related to the quantum nature of the black hole. The entropy is a significant concept for this. A recent work by Majhi and Samanta [Phys. Lett. B 770 (2017) 314] after us presented a simil
Based on the consideration that the black hole horizon and the cosmological horizon of Kerr-de Sitter black hole are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the correlations
We study the interior of a Reissner-Nordstrom Black-Hole (RNBH) using Relativistic Quantum Geometry, which was introduced in some previous works. We found discrete energy levels for a scalar field from a polynomial condition for the Heun Confluent fu
We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely the merger of marginally outer trapped surfaces (MOTSs). By simulating the head-on collision of two non-spinning unequal mass black holes, we observe that
The spacetime in the interior of a black hole can be described by an homogeneous line element, for which the Einstein--Hilbert action reduces to a one-dimensional mechanical model. We have shown in [SciPost Phys. 10, 022 (2021), [2010.07059]] that th