ﻻ يوجد ملخص باللغة العربية
We employ the thermal optimal path method to explore both the long-term and short-term interaction patterns between the onshore CNY and offshore CNH exchange rates (2012-2015). For the daily data, the CNY and CNH exchange rates show a weak alternate lead-lag structure in most of the time periods. When CNY and CNH display a large disparity, the lead-lag relationship is uncertain and depends on the prevailing market factors. The minute-scale interaction pattern between the CNY and CNH exchange rates change over time according to different market situations. We find that US dollar appreciation is associated with a lead-lag relationship running from offshore to onshore, while a (contrarian) Renminbi appreciation is associated with a lead-lag relationship running from onshore to offshore. These results are robust with respect to different sub-sample analyses and variations of the key smoothing parameter of the TOP method.
We present the symmetric thermal optimal path (TOPS) method to determine the time-dependent lead-lag relationship between two stochastic time series. This novel version of the previously introduced TOP method alleviates some inconsistencies by imposi
According to the leading models in modern finance, the presence of intraday lead-lag relationships between financial assets is negligible in efficient markets. With the advance of technology, however, markets have become more sophisticated. To determ
We introduce a method to infer lead-lag networks of agents actions in complex systems. These networks open the way to both microscopic and macroscopic states prediction in such systems. We apply this method to trader-resolved data in the foreign exch
The relationship between the size and the variance of firm growth rates is known to follow an approximate power-law behavior $sigma(S) sim S^{-beta(S)}$ where $S$ is the firm size and $beta(S)approx 0.2$ is an exponent weakly dependent on $S$. Here w
We have presented a novel technique of detecting intermittencies in a financial time series of the foreign exchange rate data of U.S.- Euro dollar(US/EUR) using a combination of both statistical and spectral techniques. This has been possible due to