ﻻ يوجد ملخص باللغة العربية
We report on multinucleon effects in low momentum transfer ($< 0.8$ GeV/c) anti-neutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, $Delta$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for antineutrino scattering off nuclei.
We report a measurement of the flux-integrated $ u_{mu}$ charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and ir
The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy
We present the first measurement of the single-differential $ u_e + bar{ u}_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were colle
Charged-current anti-neutrino interactions on hydrocarbon scintillator in the MINERvA detector are used to study activity from their final-state neutrons. To ensure that most of the neutrons are from the primary interaction, rather than hadronic rein
We report measurements of the flux-integrated $bar{ u}_mu$ and $bar{ u}_mu+ u_mu$ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam, with a mean neutrino energy of 0.86 GeV. The signal is defined as the