ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Type-Aware Embeddings for Fashion Compatibility

182   0   0.0 ( 0 )
 نشر من قبل Mariya I. Vasileva
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Outfits in online fashion data are composed of items of many different types (e.g. top, bottom, shoes) that share some stylistic relationship with one another. A representation for building outfits requires a method that can learn both notions of similarity (for example, when two tops are interchangeable) and compatibility (items of possibly different type that can go together in an outfit). This paper presents an approach to learning an image embedding that respects item type, and jointly learns notions of item similarity and compatibility in an end-to-end model. To evaluate the learned representation, we crawled 68,306 outfits created by users on the Polyvore website. Our approach obtains 3-5% improvement over the state-of-the-art on outfit compatibility prediction and fill-in-the-blank tasks using our dataset, as well as an established smaller dataset, while supporting a variety of useful queries.

قيم البحث

اقرأ أيضاً

Color compatibility is important for evaluating the compatibility of a fashion outfit, yet it was neglected in previous studies. We bring this important problem to researchers attention and present a compatibility learning framework as solution to va rious fashion tasks. The framework consists of a novel way to model outfit compatibility and an innovative learning scheme. Specifically, we model the outfits as graphs and propose a novel graph construction to better utilize the power of graph neural networks. Then we utilize both ground-truth labels and pseudo labels to train the compatibility model in a weakly-supervised manner.Extensive experimental results verify the importance of color compatibility alone with the effectiveness of our framework. With color information alone, our models performance is already comparable to previous methods that use deep image features. Our full model combining the aforementioned contributions set the new state-of-the-art in fashion compatibility prediction.
We consider the problem of complementary fashion prediction. Existing approaches focus on learning an embedding space where fashion items from different categories that are visually compatible are closer to each other. However, creating such labeled outfits is intensive and also not feasible to generate all possible outfit combinations, especially with large fashion catalogs. In this work, we propose a semi-supervised learning approach where we leverage large unlabeled fashion corpus to create pseudo-positive and pseudo-negative outfits on the fly during training. For each labeled outfit in a training batch, we obtain a pseudo-outfit by matching each item in the labeled outfit with unlabeled items. Additionally, we introduce consistency regularization to ensure that representation of the original images and their transformations are consistent to implicitly incorporate colour and other important attributes through self-supervision. We conduct extensive experiments on Polyvore, Polyvore-D and our newly created large-scale Fashion Outfits datasets, and show that our approach with only a fraction of labeled examples performs on-par with completely supervised methods.
Uncertainty is the only certainty there is. Modeling data uncertainty is essential for regression, especially in unconstrained settings. Traditionally the direct regression formulation is considered and the uncertainty is modeled by modifying the out put space to a certain family of probabilistic distributions. On the other hand, classification based regression and ranking based solutions are more popular in practice while the direct regression methods suffer from the limited performance. How to model the uncertainty within the present-day technologies for regression remains an open issue. In this paper, we propose to learn probabilistic ordinal embeddings which represent each data as a multivariate Gaussian distribution rather than a deterministic point in the latent space. An ordinal distribution constraint is proposed to exploit the ordinal nature of regression. Our probabilistic ordinal embeddings can be integrated into popular regression approaches and empower them with the ability of uncertainty estimation. Experimental results show that our approach achieves competitive performance. Code is available at https://github.com/Li-Wanhua/POEs.
146 - Yun Ye , Yixin Li , Bo Wu 2019
Fashion attribute classification is of great importance to many high-level tasks such as fashion item search, fashion trend analysis, fashion recommendation, etc. The task is challenging due to the extremely imbalanced data distribution, particularly the attributes with only a few positive samples. In this paper, we introduce a hard-aware pipeline to make full use of hard samples/attributes. We first propose Hard-Aware BackPropagation (HABP) to efficiently and adaptively focus on training hard data. Then for the identified hard labels, we propose to synthesize more complementary samples for training. To stabilize training, we extend semi-supervised GAN by directly deactivating outputs for synthetic complementary samples (Deact). In general, our method is more effective in addressing hard cases. HABP weights more on hard samples. For hard attributes with insufficient training data, Deact brings more stable synthetic samples for training and further improve the performance. Our method is verified on large scale fashion dataset, outperforming other state-of-the-art without any additional supervisions.
375 - Qing Ping , Bing Wu , Wanying Ding 2019
In this paper, we introduce attribute-aware fashion-editing, a novel task, to the fashion domain. We re-define the overall objectives in AttGAN and propose the Fashion-AttGAN model for this new task. A dataset is constructed for this task with 14,221 and 22 attributes, which has been made publically available. Experimental results show the effectiveness of our Fashion-AttGAN on fashion editing over the original AttGAN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا