ﻻ يوجد ملخص باللغة العربية
Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique could be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.
Two barrier RF systems were fabricated, tested and installed in the Fermilab Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90 kHz. When a stationary barrier is combined with a moving barrier, injected beams from the Boo
A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same
A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavit
We report the direct observations of sub-macropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting RF cavities. The experiments were performed
An alternative cooling approach to prevent rf breakdown in magnetic fields is described that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionizati