ﻻ يوجد ملخص باللغة العربية
The quantum valley Hall effect (QVHE) has been observed in a variety of experimental setups, both quantum and classical. While extremely promising for applications, one should be reminded that QVHE is not an exact topological phenomenon and that, so far, it has been fully understood only qualitatively in certain extreme limits. Here we present a technique to relate QVHE systems with exact quantum spin-Hall insulators that accept real-space representations, without taking any extreme limit. Since the bulk-boundary correspondence is well understood for the latter, we are able to formulate precise quantitative statements about the QVHE regime and its robustness against disorder. We further investigate the effect using a novel experimental platform based on magnetically coupled spinners. Visual renderings, quantitative data and various tests of the domain-wall modes are supplied, hence giving an unprecedented insight into the effect.
A recent scientific debate has arisen: Which processes underlie the actual ground of the valley Hall effect (VHE) in two-dimensional materials? The original VHE emerges in samples with ballistic transport of electrons due to the anomalous velocity te
The nonlinear Hall effect is an unconventional response, in which a voltage can be driven by two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the Hall effects, it can survive time-reversal symmetry but is sensiti
We study the electronic structures and topological properties of $(M+N)$-layer twisted graphene systems. We consider the generic situation that $N$-layer graphene is placed on top of the other $M$-layer graphene, and is twisted with respect to each o
The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, b
When electrons are confined in two-dimensional (2D) materials, quantum mechanically enhanced transport phenomena, as exemplified by the quantum Hall effects (QHE), can be observed. Graphene, an isolated single atomic layer of graphite, is an ideal re