ﻻ يوجد ملخص باللغة العربية
The Fourier spectrum of the $gamma$-Dor variable KIC 5608334 shows remarkable frequency groups at $sim$3, $sim$6, $sim$9, and 11--12,d$^{-1}$. We explain the four frequency groups as prograde sectoral g modes in a rapidly rotating star. Frequencies of intermediate-to-high radial order prograde sectoral g modes in a rapidly rotating star are proportional to $|m|$ (i.e., $ u propto |m|$) in the co-rotating frame as well as in the inertial frame. This property is consistent with the frequency groups of KIC 5608334 as well as the period vs. period-spacing relation present within each frequency group, if we assume a rotation frequency of $2.2$,d$^{-1}$, and that each frequency group consists of prograde sectoral g modes of $|m| = 1, 2, 3,$ and 4, respectively. In addition, these modes naturally satisfy near-resonance conditions $ u_iapprox u_j+ u_k$ with $m_i=m_j+m_k$. We even find exact resonance frequency conditions (within the precise measurement uncertainties) in many cases, which correspond to combination frequencies.
We report the discovery of the hottest hybrid B--type pulsator, KIC,3240411, that exhibits the period spacing in the low--frequency range. This pattern is associated with asymptotic properties of high-order gravity (g) modes. Our seismic modelling ma
We present the first preliminary results on the analysis of ground-based time series of the {gamma} Dor star KIC 6462033 (TYC 3144-646-1, V = 10.83, P = 0.69686 d) as well as Kepler photometry in order to study pulsational behaviour in this star.{gam
Despite a century of remarkable progress in understanding stellar interiors, we know surprisingly little about the inner workings of stars spinning near their critical limit. New interferometric imaging of these so-called ``rapid rotators combined wi
Context: Mode identification has remained a major obstacle in the interpretation of pulsation spectra in rapidly rotating stars. Aims: We would like to test mode identification methods and seismic diagnostics in rapidly rotating stars, using oscill
The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how