ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of local structural distortion in driving ferroelectricity in GdCrO3

263   0   0.0 ( 0 )
 نشر من قبل Dinesh Topwal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Temperature dependent synchrotron x-ray diffraction and extended x-ray absorption fine structure (EXAFS) studies were performed to understand the role of structural characteristics in driving the magnetoelectric mul- tiferoic properties of GdCrO3. The results suggest that the distortion in the structure appears to be associated with the off-center displacement of Gd-atoms together with octahedral rotations via displacement of the oxygen ions in GdCrO3. In addition, the magnetic coupling below magnetic transition temperature leads to additional distortion in the system via magnetostriction effect, playing a complementary role in the enhancement of ferro- electric polarization. Further, a comparative EXAFS study of GdCrO3 with a similar system YCrO3 suggests that oxygen environment of Gd in GdCrO3 is different from Y in YCrO3, which resulting in an orthorhombic P na21 structure in GdCrO3 in contrast to the monoclinic P 21 structure in YCrO3 .

قيم البحث

اقرأ أيضاً

78 - S. Liu , H. Zhang , S. Ghose 2019
In hybrid improper ferroelectric systems, polarization arises from the onset of successive nonpolar lattice modes. In this work, measurements and modeling were performed to determine the spatial symmetries of the phases involved in the transitions to these modes. Structural and optical measurements reveal that the tilt and rotation distortions of the MnO6 or TiO6 polyhedra relative to the high symmetry phases driving ferroelectricity in the hybrid improper Ca3X2O7 system (X=Mn and Ti) condense at different temperatures. The tilt angle vanishes abruptly at T$_T$ ~ 400 K for Ca3Mn2O7 (and continuously for X=Ti) and the rotation mode amplitude is suppressed at much higher temperatures T$_R$ ~1060 K. Moreover, Raman measurements in Ca3Mn2O7 under isotropic pressure reveal that the polyhedral tilts can be suppressed by very low pressures (between 1.4 and2.3 GPa) indicating their softness. These results indicate that the Ca3Mn2O7 system provides a new platform for strain engineering of ferroelectric properties in film based systems with substrate induced strain.
Whereas exceptional mechanical and radiation performances have been found in the emergent medium- and high-entropy alloys (MEAs and HEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, to defec t transport has been largely unexplored at the atomic level. Here we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory calculations to investigate a series of body-centered cubic (BCC) MEAs and HEAs. Our results demonstrate that all alloys exhibit local lattice distortions (LLD) to some extent, but an anomalous LLD, merging of the first and second atomic shells, occurs only in the Zr- and/or Hf-containing MEAs and HEAs. In addition, through the ab-initio simulations we show that charge transfer among the elements profoundly reduce the size mismatch effect. The observed competitive coexistence between LLD and charge transfer not only demonstrates the importance of the electronic effects on the local environments in MEAs and HEAs, but also provides new perspectives to in-depth understanding of the complicated defect transport in these alloys.
We report emergence of photoluminescence at room temperature in trigonal $Cs_3Bi_2Br_9$ at high pressures. Enhancement in intensity with pressure is found to be driven by increase in distortion of $BiBr_6$ octahedra and iso-structural transitions. El ectronic band structure calculations show the sample in the high pressure phase to be an indirect band gap semiconductor. The luminescence peak profile show signatures related to the recombination of free and self trapped excitons, respectively. Blue shift of the both peaks till about 4.4 GPa are due to the exciton recombination before relaxation due to the decrease in exciton lifetime with scattering from phonons
106 - Y. Tong , G. Velisa , T. Yang 2017
The atomic-level tunability that results from alloying multiple transition metals with d electrons in concentrated solid solution alloys (CSAs), including high-entropy alloys (HEAs), has produced remarkable properties for advanced energy applications , in particular, damage resistance in high-radiation environments. The key to understanding CSAs radiation performance is quantitatively characterizing their complex local physical and chemical environments. In this study, the local structure of a FeCoNiCrPd HEA is quantitatively analyzed with X-ray total scattering and extended X-ray absorption fine structure methods. Compared to FeCoNiCr and FeCoNiCrMn, FeCoNiCrPd with a quasi-random alloy structure has a strong local lattice distortion, which effectively pins radiation-induced defects. Distinct from a relaxation behavior in FeCoNiCr and FeCoNiCrMn, ion irradiation further enhanced the local lattice distortion in FeCoNiCrPd due to a preference for forming Pd-Pd atomic pairs.
A structural phase transition from cubic $Fdbar{3}m$ to tetragonal $I$4$_1$/$amd$ symmetry with $c/a >$ 1 is observed at $T_{rm{S}}$ = 16 K in spinel GeCo$_2$O$_4$ below the Neel temperature $T_N$ = 21 K. Structural and magnetic ordering appear to be decoupled with the structural distortion occurring at 16 K while magnetic order occurs at 21 K as determined by magnetic susceptibility and heat capacity measurements. An elongation of CoO$_6$ octahedra is observed in the tetragonal phase of GeCo$_2$O$_4$. We present the complete crystallographic description of GeCo$_2$O$_4$ in the tetragonal $I$4$_1$/$amd$ space group and discuss the possible origin of this distortion in the context of known structural transitions in magnetic spinels. GeCo$_2$O$_4$ exhibits magnetodielectric coupling below $T_{rm{N}}$. The related spinels GeFe$_2$O$_4$ and GeNi$_2$O$_4$ have also been examined for comparison. Structural transitions were not detected in either compound down to $T approx$ 8 K. Magnetometry experiments reveal in GeFe$_2$O$_4$ a second antiferromagnetic transition, with $T_{rm{N1}}$ = 7.9 K and $T_{rm{N2}}$ = 6.2 K, that was previously unknown, and that bear a similarity to the magnetism of GeNi$_2$O$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا