ﻻ يوجد ملخص باللغة العربية
Estimation of quantum states and measurements is crucial for the implementation of quantum information protocols. The standard method for each is quantum tomography. However, quantum tomography suffers from systematic errors caused by imperfect knowledge of the system. We present a procedure to simultaneously characterize quantum states and measurements that mitigates systematic errors by use of a single high-fidelity state preparation and a limited set of high-fidelity unitary operations. Such states and operations are typical of many state-of-the-art systems. For this situation we design a set of experiments and an optimization algorithm that alternates between maximizing the likelihood with respect to the states and measurements to produce estimates of each. In some cases, the procedure does not enable unique estimation of the states. For these cases, we show how one may identify a set of density matrices compatible with the measurements and use a semi-definite program to place bounds on the states expectation values. We demonstrate the procedure on data from a simulated experiment with two trapped ions.
We describe a technique for self consistently characterizing both the quantum state of a single qubit system, and the positive-operator-valued measure (POVM) that describes measurements on the system. The method works with only ten measurements. We a
Two-qubit systems typically employ 36 projective measurements for high-fidelity tomographic estimation. The overcomplete nature of the 36 measurements suggests possible robustness of the estimation procedure to missing measurements. In this paper, we
Tomography of a quantum state is usually based on positive operator-valued measure (POVM) and on their experimental statistics. Among the available reconstructions, the maximum-likelihood (MaxLike) technique is an efficient one. We propose an extensi
We investigate quantum state tomography (QST) for pure states and quantum process tomography (QPT) for unitary channels via $adaptive$ measurements. For a quantum system with a $d$-dimensional Hilbert space, we first propose an adaptive protocol wher
We examine the problem of finding the minimum number of Pauli measurements needed to uniquely determine an arbitrary $n$-qubit pure state among all quantum states. We show that only $11$ Pauli measurements are needed to determine an arbitrary two-qub