ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative spectrum of non-local gravity

149   0   0.0 ( 0 )
 نشر من قبل Gianluca Calcagni
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the non-perturbative degrees of freedom of a class of weakly non-local gravitational theories that have been proposed as an ultraviolet completion of general relativity. At the perturbative level, it is known that the degrees of freedom of non-local gravity are the same of the Einstein--Hilbert theory around any maximally symmetric spacetime. We prove that, at the non-perturbative level, the degrees of freedom are actually eight in four dimensions, contrary to what one might guess on the basis of the infinite number of derivatives present in the action. It is shown that six of these degrees of freedom do not propagate on Minkowski spacetime, but they might play a role at large scales on curved backgrounds. We also propose a criterion to select the form factor almost uniquely.



قيم البحث

اقرأ أيضاً

We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano-Regge state-sum model, which de fines 3d quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3d quantum gravity and 2d statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3d/2d holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.
103 - Clifford V. Johnson 2020
Some recently proposed definitions of Jackiw-Teitelboim gravity and supergravities in terms of combinations of minimal string models are explored, with a focus on physics beyond the perturbative expansion in spacetime topology. While this formally in volves solving infinite order non-linear differential equations, it is shown that the physics can be extracted to arbitrarily high accuracy in a simple controlled truncation scheme, using a combination of analytical and numerical methods. The non-perturbative spectral densities are explicitly computed and exhibited. The full spectral form factors, involving crucial non-perturbative contributions from wormhole geometries, are also computed and displayed, showing the non-perturbative details of the characteristic `slope, `dip, `ramp and `plateau features. It is emphasized that results of this kind can most likely be readily extracted for other types of JT gravity using the same methods.
We discuss aspects of non-perturbative unitarity in quantum field theory. The additional ghost degrees of freedom arising in truncations of an effective action at a finite order in derivatives could be fictitious degrees of freedom. Their contributio ns to the fully-dressed propagator -- the residues of the corresponding ghost-like poles -- vanish once all operators compatible with the symmetry of the theory are included in the effective action. These fake ghosts do not indicate a violation of unitarity.
Recently, Saad, Shenker and Stanford showed how to define the genus expansion of Jackiw-Teitelboim quantum gravity in terms of a double-scaled Hermitian matrix model. However, the models non-perturbative sector has fatal instabilities at low energy t hat they cured by procedures that render the physics non-unique. This might not be a desirable property for a system that is supposed to capture key features of quantum black holes. Presented here is a model with identical perturbative physics at high energy that instead has a stable and unambiguous non-perturbative completion of the physics at low energy. An explicit examination of the full spectral density function shows how this is achieved. The new model, which is based on complex matrix models, also allows for the straightforward inclusion of spacetime features analogous to Ramond-Ramond fluxes. Intriguingly, there is a deformation parameter that connects this non-perturbative formulation of JT gravity to one which, at low energy, has features of a super JT gravity.
We analyze the partition function of three-dimensional quantum gravity on the twisted solid tours and the ensuing dual field theory. The setting is that of a non-perturbative model of three dimensional quantum gravity--the Ponzano-Regge model, that w e briefly review in a self-contained manner--which can be used to compute quasi-local amplitudes for its boundary states. In this second paper of the series, we choose a particular class of boundary spin-network states which impose Gibbons-Hawking-York boundary conditions to the partition function. The peculiarity of these states is to encode a two-dimensional quantum geometry peaked around a classical quadrangulation of the finite toroidal boundary. Thanks to the topological properties of three-dimensional gravity, the theory easily projects onto the boundary while crucially still keeping track of the topological properties of the bulk. This produces, at the non-perturbative level, a specific non-linear sigma-model on the boundary, akin to a Wess-Zumino-Novikov-Witten model, whose classical equations of motion can be used to reconstruct different bulk geometries: the expected classical one is accompanied by other quantum solutions. The classical regime of the sigma-model becomes reliable in the limit of large boundary spins, which coincides with the semiclassical limit of the boundary geometry. In a 1-loop approximation around the solutions to the classical equations of motion, we recover (with corrections due to the non-classical bulk geometries) results obtained in the past via perturbative quantum General Relativity and through the study of characters of the BMS3 group. The exposition is meant to be completely self-contained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا