ﻻ يوجد ملخص باللغة العربية
Apart from recent progress in Gamma Dor stars, identifying modes in rapidly rotating stars is a formidable challenge due to the lack of simple, easily identifiable frequency patterns. As a result, it is necessary to look to observational methods for identifying modes. Two popular techniques are spectroscopic mode identification based on line profile variations (LPVs) and photometric mode identification based on amplitude ratios and phase differences between multiple photometric bands. In this respect, the BRITE constellation is particularly interesting as it provides space-based multi-colour photometry. The present contribution describes the latest developments in obtaining theoretical predictions for amplitude ratios and phase differences for pulsation modes in rapidly rotating stars. These developments are based on full 2D non-adiabatic pulsation calculations, using models from the ESTER code, the only code to treat in a self-consistent way the thermal equilibrium of rapidly rotating stars. These predictions are then specifically applied to the BRITE photometric bands to explore the prospects of identifying modes based on BRITE observations.
Context: Mode identification has remained a major obstacle in the interpretation of pulsation spectra in rapidly rotating stars. Aims: We would like to test mode identification methods and seismic diagnostics in rapidly rotating stars, using oscill
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter
A new two dimensional non-perturbative code to compute accurate oscillation modes of rapidly rotating stars is presented. The 2D calculations fully take into account the centrifugal distorsion of the star while the non perturbative method includes th
We continue our studies on stellar latitudinal differential rotation. The presented work is a sequel of the work of Reiners et al. who studied the spectral line broadening profile of hundreds of stars of spectral types A through G at high rotational
Recent observations of rapidly rotating stars have revealed the presence of regular patterns in their pulsation spectra. This has raised the question as to their physical origin, and in particular, whether they can be explained by an asymptotic frequ