ﻻ يوجد ملخص باللغة العربية
There is an increase in usage of smaller cells or femtocells to improve performance and coverage of next-generation heterogeneous wireless networks (HetNets). However, the interference caused by femtocells to neighboring cells is a limiting performance factor in dense HetNets. This interference is being managed via distributed resource allocation methods. However, as the density of the network increases so does the complexity of such resource allocation methods. Yet, unplanned deployment of femtocells requires an adaptable and self-organizing algorithm to make HetNets viable. As such, we propose to use a machine learning approach based on Q-learning to solve the resource allocation problem in such complex networks. By defining each base station as an agent, a cellular network is modelled as a multi-agent network. Subsequently, cooperative Q-learning can be applied as an efficient approach to manage the resources of a multi-agent network. Furthermore, the proposed approach considers the quality of service (QoS) for each user and fairness in the network. In comparison with prior work, the proposed approach can bring more than a four-fold increase in the number of supported femtocells while using cooperative Q-learning to reduce resource allocation overhead.
A non-orthogonal multiple access (NOMA) approach to user signal power allocation called Fair-NOMA is introduced. Fair-NOMA is the application of NOMA in such a way that two mobile users have the opportunity to always achieve at least the information
The fundamental power allocation requirements for NOMA systems with minimum quality of service (QoS) requirements are investigated. For any minimum QoS rate $R_0$, the limits on the power allocation coefficients for each user are derived, such that a
A novel framework of intelligent reflecting surface (IRS)-aided multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) network is proposed, where a base station (BS) serves multiple clusters with unfixed number of users in each clu
Effective capacity (EC) determines the maximum communication rate subject to a particular delay constraint. In this work, we analyze the EC of ultra reliable Machine Type Communication (MTC) networks operating in the finite blocklength (FB) regime. F
A non-orthogonal multiple access (NOMA) approach that always outperforms orthogonal multiple access (OMA) called Fair-NOMA is introduced. In Fair-NOMA, each mobile user is allocated its share of the transmit power such that its capacity is always gre