ﻻ يوجد ملخص باللغة العربية
While reduction in feature size makes computation cheaper in terms of latency, area, and power consumption, performance of emerging data-intensive applications is determined by data movement. These trends have introduced the concept of scalability as reaching a desirable performance per unit cost by using as few number of units as possible. Many proposals have moved compute closer to the memory. However, these efforts ignored maintaining a balance between bandwidth and compute rate of an architecture, with those of applications, which is a key principle in designing scalable large systems. This paper proposes the use of memory slices, a modular building block for scalable memory systems integrated with compute, in which performance scales with memory size (and volume of data). The slice architecture utilizes a programmable memory interface feeding a systolic compute engine with high reuse rate. The modularity feature of slice-based systems is exploited with a partitioning and data mapping strategy across allocated memory slices where training performance scales with the data size. These features enable shifting the most pressure to cheap compute units rather than expensive memory accesses or transfers via interconnection network. An application of the memory slices to a scale-out memory system is accelerating the training of recurrent, convolutional, and hybrid neural networks (RNNs and RNNs+CNN) that are forming cloud workloads. The results of our cycle-level simulations show that memory slices exhibits a superlinear speedup when the number of slices increases. Furthermore, memory slices improve power efficiency to 747 GFLOPs/J for training LSTMs. While our current evaluation uses memory slices with 3D packaging, a major value is that slices can also be constructed with a variety of packaging options, for example with DDR-based memory units.
Commodity memory interfaces have difficulty in scaling memory capacity to meet the needs of modern multicore and big data systems. DRAM device density and maximum device count are constrained by technology, package, and signal in- tegrity issues that
The current mobile applications have rapidly growing memory footprints, posing a great challenge for memory system design. Insufficient DRAM main memory will incur frequent data swaps between memory and storage, a process that hurts performance, cons
Memory trace analysis is an important technology for architecture research, system software (i.e., OS, compiler) optimization, and application performance improvements. Hardware-snooping is an effective and efficient approach to monitor and collect m
Image bitmaps have been widely used in in-memory applications, which consume lots of storage space and energy. Compared with legacy DRAM, non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features in capacity and power s
Computers continue to diversify with respect to system designs, emerging memory technologies, and application memory demands. Unfortunately, continually adapting the conventional virtual memory framework to each possible system configuration is chall