ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Connectivity from Single Trial fMRI Data by Sampling Biologically Plausible Models

102   0   0.0 ( 0 )
 نشر من قبل Hans-Christian Ruiz Dipl-Phys
 تاريخ النشر 2018
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The estimation of causal network architectures in the brain is fundamental for understanding cognitive information processes. However, access to the dynamic processes underlying cognition is limited to indirect measurements of the hidden neuronal activity, for instance through fMRI data. Thus, estimating the network structure of the underlying process is challenging. In this article, we embed an adaptive importance sampler called Adaptive Path Integral Smoother (APIS) into the Expectation-Maximization algorithm to obtain point estimates of causal connectivity. We demonstrate on synthetic data that this procedure finds not only the correct network structure but also the direction of effective connections from random initializations of the connectivity matrix. In addition--motivated by contradictory claims in the literature--we examine the effect of the neuronal timescale on the sensitivity of the BOLD signal to changes in the connectivity and on the maximum likelihood solutions of the connectivity. We conclude with two warnings: First, the connectivity estimates under the assumption of slow dynamics can be extremely biased if the data was generated by fast neuronal processes. Second, the faster the time scale, the less sensitive the BOLD signal is to changes in the incoming connections to a node. Hence, connectivity estimation using realistic neural dynamics timescale requires extremely high-quality data and seems infeasible in many practical data sets.



قيم البحث

اقرأ أيضاً

196 - G. Wu , W.Liao , S. Stramaglia 2012
A great improvement to the insight on brain function that we can get from fMRI data can come from effective connectivity analysis, in which the flow of information between even remote brain regions is inferred by the parameters of a predictive dynami cal model. As opposed to biologically inspired models, some techniques as Granger causality (GC) are purely data-driven and rely on statistical prediction and temporal precedence. While powerful and widely applicable, this approach could suffer from two main limitations when applied to BOLD fMRI data: confounding effect of hemodynamic response function (HRF) and conditioning to a large number of variables in presence of short time series. For task-related fMRI, neural population dynamics can be captured by modeling signal dynamics with explicit exogenous inputs; for resting-state fMRI on the other hand, the absence of explicit inputs makes this task more difficult, unless relying on some specific prior physiological hypothesis. In order to overcome these issues and to allow a more general approach, here we present a simple and novel blind-deconvolution technique for BOLD-fMRI signal. Coming to the second limitation, a fully multivariate conditioning with short and noisy data leads to computational problems due to overfitting. Furthermore, conceptual issues arise in presence of redundancy. We thus apply partial conditioning to a limited subset of variables in the framework of information theory, as recently proposed. Mixing these two improvements we compare the differences between BOLD and deconvolved BOLD level effective networks and draw some conclusions.
Learning latent features from time series data is an important problem in both machine learning and brain function. One approach, called Slow Feature Analysis (SFA), leverages the slowness of many salient features relative to the rapidly varying inpu t signals. Furthermore, when trained on naturalistic stimuli, SFA reproduces interesting properties of cells in the primary visual cortex and hippocampus, suggesting that the brain uses temporal slowness as a computational principle for learning latent features. However, despite the potential relevance of SFA for modeling brain function, there is currently no SFA algorithm with a biologically plausible neural network implementation, by which we mean an algorithm operates in the online setting and can be mapped onto a neural network with local synaptic updates. In this work, starting from an SFA objective, we derive an SFA algorithm, called Bio-SFA, with a biologically plausible neural network implementation. We validate Bio-SFA on naturalistic stimuli.
Edge-centric functional connectivity (eFC) has recently been proposed to characterise the finest time resolution on the FC dynamics without the concomitant assumptions of sliding-window approaches. Here, we lay the mathematical foundations for the ed ge-centric analysis and examine its main findings from a quantitative perspective. The proposed framework provides a theoretical explanation for the observed occurrence of high-amplitude edge cofluctuations across datasets and clarifies why a few large events drive the node-centric FC (nFC). Our exposition also constitutes a critique of the edge-centric approach as currently applied to functional MRI (fMRI) time series. The central argument is that the existing findings based on edge time series can be derived from the static nFC under a null hypothesis that only accounts for the observed static spatial correlations and not the temporal ones. Challenging our analytic predictions against fMRI data from the Human Connectome Project confirms that the nFC is sufficient to replicate the eFC matrix, the edge communities, the large cofluctuations, and the corresponding brain activity mode. We conclude that the temporal structure of the edge time series has not so far been exploited sufficiently and encourage further work to explore features that cannot be explained by the presented static null model.
Cortical pyramidal neurons receive inputs from multiple distinct neural populations and integrate these inputs in separate dendritic compartments. We explore the possibility that cortical microcircuits implement Canonical Correlation Analysis (CCA), an unsupervised learning method that projects the inputs onto a common subspace so as to maximize the correlations between the projections. To this end, we seek a multi-channel CCA algorithm that can be implemented in a biologically plausible neural network. For biological plausibility, we require that the network operates in the online setting and its synaptic update rules are local. Starting from a novel CCA objective function, we derive an online optimization algorithm whose optimization steps can be implemented in a single-layer neural network with multi-compartmental neurons and local non-Hebbian learning rules. We also derive an extension of our online CCA algorithm with adaptive output rank and output whitening. Interestingly, the extension maps onto a neural network whose neural architecture and synaptic updates resemble neural circuitry and synaptic plasticity observed experimentally in cortical pyramidal neurons.
Simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can be used to non-invasively measure the spatiotemporal dynamics of the human brain. One challenge is dealing with the artifacts that each modality introduces into the other when the two are recorded concurrently, for example the ballistocardiogram (BCG). We conducted a preliminary comparison of three different MR compatible EEG recording systems and assessed their performance in terms of single-trial classification of the EEG when simultaneously collecting fMRI. We found tradeoffs across all three systems, for example varied ease of setup and improved classification accuracy with reference electrodes (REF) but not for pulse artifact subtraction (PAS) or reference layer adaptive filtering (RLAF).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا