ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution of Stress Tensor around Static Quark--Anti-Quark from Yang-Mills Gradient Flow

107   0   0.0 ( 0 )
 نشر من قبل Ryosuke Yanagihara
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The spatial distribution of the stress tensor around the quark--anti-quark ($Qbar{Q}$) pair in SU(3) lattice gauge theory is studied. The Yang-Mills gradient flow plays a crucial role to make the stress tensor well-defined and derivable from the numerical simulations on the lattice. The resultant stress tensor with a decomposition into local principal axes shows, for the first time, the detailed structure of the flux tube along the longitudinal and transverse directions in a gauge invariant manner. The linear confining behavior of the $Qbar{Q}$ potential at long distances is derived directly from the integral of the local stress tensor.

قيم البحث

اقرأ أيضاً

We study the spatial distribution of the stress tensor around static quark-anti-quark pair in SU(3) lattice gauge theory. In particular, we reveal the transverse structure of the stress tensor distribution in detail by taking the continuum limit. The Yang-Mills gradient flow plays a crucial role to make the stress tensor well-defined and derivable from the numerical simulations on the lattice.
Energy momentum tensor (EMT) characterizes the response of the vacuum as well as the thermal medium under the color electromagnetic fields. We define the EMT by means of the gradient flow formalism and study its spatial distribution around a static q uark in the deconfined phase of SU(3) Yang-Mills theory on the lattice. Although no significant difference can be seen between the EMT distributions in the radial and transverse directions except for the sign, the temporal component is substantially different from the spatial ones near the critical temperature $T_c$. This is in contrast to the prediction of the leading-order thermal perturbation theory. The lattice data of the EMT distribution also indicate the thermal screening at long distance and the perturbative behavior at short distance.
We explore the distribution of the energy momentum tensor (EMT) around quark--anti-quark and single quark at nonzero temperature in SU(3) Yang-Mills gauge theory by extending our previous study on the EMT distribution in static quark--anti-quark syst ems in vacuum. We discuss the disappearance of the flux tube structure observed in the vacuum simulation. We investigate the total stress acting on the mid-plane between a quark and an anti-quark and show that it agrees with the force obtained from the derivative of the free energy. The color Debye screening effect in the deconfined phase is also discussed in terms of the EMT distribution.
Euclidean two-point correlators of the energy-momentum tensor (EMT) in SU(3) gauge theory on the lattice are studied on the basis of the Yang-Mills gradient flow. The entropy density and the specific heat obtained from the two-point correlators are s hown to be in good agreement with those from the one-point functions of EMT. These results constitute a first step toward the first principle simulations of the transport coefficients with the gradient flow.
We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 l attice spacings $a=0.06$ and 0.12 fm, $(M_pi)_text{min} L approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calculate the valence-quark distribution of pion and find it to be consistent with the FNAL E615 experimental results, and our ratio of the $u$ quark PDF in the kaon to that in the pion agrees with the CERN NA3 experiment. We also make predictions of the strange-quark distribution of the kaon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا