ﻻ يوجد ملخص باللغة العربية
Image captioning is a multimodal task involving computer vision and natural language processing, where the goal is to learn a mapping from the image to its natural language description. In general, the mapping function is learned from a training set of image-caption pairs. However, for some language, large scale image-caption paired corpus might not be available. We present an approach to this unpaired image captioning problem by language pivoting. Our method can effectively capture the characteristics of an image captioner from the pivot language (Chinese) and align it to the target language (English) using another pivot-target (Chinese-English) sentence parallel corpus. We evaluate our method on two image-to-English benchmark datasets: MSCOCO and Flickr30K. Quantitative comparisons against several baseline approaches demonstrate the effectiveness of our method.
Most of current image captioning models heavily rely on paired image-caption datasets. However, getting large scale image-caption paired data is labor-intensive and time-consuming. In this paper, we present a scene graph-based approach for unpaired i
Recently, image captioning has aroused great interest in both academic and industrial worlds. Most existing systems are built upon large-scale datasets consisting of image-sentence pairs, which, however, are time-consuming to construct. In addition,
Language Models based on recurrent neural networks have dominated recent image caption generation tasks. In this paper, we introduce a Language CNN model which is suitable for statistical language modeling tasks and shows competitive performance in i
The ability to quickly learn from a small quantity oftraining data widens the range of machine learning applications. In this paper, we propose a data-efficient image captioning model, VisualGPT, which leverages the linguistic knowledge from a large
Existing research for image captioning usually represents an image using a scene graph with low-level facts (objects and relations) and fails to capture the high-level semantics. In this paper, we propose a Theme Concepts extended Image Captioning (T