ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter constraints from dwarf galaxies: a data-driven analysis

326   0   0.0 ( 0 )
 نشر من قبل Bryan Zaldivar
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dwarf galaxies represent a powerful probe of annihilating dark matter particle models, with gamma-ray data setting some of the best bounds available. A major issue in improving over existing constraints consists in the limited knowledge of the astrophysical background (mostly diffuse photons, but also unresolved sources). Perhaps more worrisome, several approaches in the literature suffer of the difficulty of assessing the systematic error due to background mis-modelling. Here we propose a data-driven method to estimate the background at the dwarf position and its uncertainty, relying on an appropriate use of the whole-sky data, via an optimisation procedure of the interpolation weights. While this article is mostly methodologically oriented, we also report the bounds based on latest Fermi-LAT data and updated information for J-factors for both isolated and stacked dwarfs. Our results are very competitive with the Fermi-LAT ones, while being derived with a more general and flexible method. We discuss the impact of profiling over the J-factor as well as over the background probability distribution function, with the latter resulting for instance crucial in drawing conclusions of compatibility with DM interpretations of the so-called Galactic Centre Excess.



قيم البحث

اقرأ أيضاً

We present an updated analysis of the gamma-ray flux from the directions of classical dwarf spheroidal galaxies, deriving new constraints on WIMP dark matter (DM) annihilation using a decade of Fermi-LAT data. Among the major novelties, we infer the dwarfs J-factors by including new observations without imposing any a priori parametric profile for the DM distribution. While statistically compatible with results obtained from more conventional parameterisations, this procedure reduces the theoretical bias imposed on the data. Furthermore, we retain the full data-driven shape of the J-factors empirical probability distributions when setting limits on DM, without imposing log-normality as is typically done. In conjunction with the data-driven J-factors, we use a new method for estimating the probability distribution function of the astrophysical background at the dwarf position, fully profiling over background uncertainties. We show that, for most classical dwarfs, the background systematic uncertainty dominates over the uncertainty on their J-factors. Raw distributions of J- and D-factors (the latter being the analogous of J-factors for decaying DM) are available upon request.
We present constraints on the annihilation cross section of WIMP dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events. We report on the results of $sim$230 hours of observations of five dwarf galaxies and the joint statistical analysis of four of the dwarf galaxies. We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis. The derived upper limit on the dark matter annihilation cross section from the joint analysis is $1.35times 10^{-23} {mathrm{ cm^3s^{-1}}}$ at 1 TeV for the bottom quark ($bbar{b}$) final state, $2.85times 10^{-24}{mathrm{ cm^3s^{-1}}}$ at 1 TeV for the tau lepton ($tau^{+}tau^{-}$) final state and $1.32times 10^{-25}{mathrm{ cm^3s^{-1}}}$ at 1 TeV for the gauge boson ($gammagamma$) final state.
209 - Abraham Loeb , Neal Weiner 2010
We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross-section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization.
We present methods to assess whether gamma-ray excesses towards Milky Way dwarf galaxies can be attributed to astrophysical sources rather than to dark matter annihilation. As a case study we focus on Reticulum II, the dwarf which shows the strongest evidence for a gamma-ray signal in Fermi data. Dark matter models and those with curved energy spectra provide good fits to the data, while a simple power law is ruled out at 97.5% confidence. We compare RetIIs spectrum to known classes of gamma-ray sources and find a useful representation in terms of spectral curvature and the energy at which the spectral energy distribution peaks. In this space the blazar classes appear segregated from the confidence region occupied by RetII. Pulsars have similar gamma-ray spectra to RetII but we show that RetII is unlikely to host a pulsar population detectable in gamma rays. Tensions with astrophysical explanations are stronger when analyzing 6.5 years of Pass 7 than with the same amount of Pass 8 data, where the excess is less significant. These methods are applicable to any dwarf galaxy which is a promising dark matter target and shows signs of gamma-ray emission along its line of sight.
152 - Stephan Zimmer 2011
Multiwavelength observations suggest that clusters are reservoirs of vast amounts relativistic electrons and positrons that are either injected into and accelerated directly in the intra-cluster medium, or produced as secondary pairs by cosmic ray io ns scattering on ambient protons. In these possible scenarios gamma rays are produced either through electrons upscattering low-energy photons or by decay of neutral pions produced by hadronic interactions. In addition, the high mass-to-light ratios in clusters in combination with considerable Dark Matter (DM) overdensities makes them interesting targets for indirect DM searches with gamma rays. The resulting signals are different from known point sources or from diffuse emission and could possibly be detected with the Fermi-LAT. Both WIMP annihilation/decay spectra and cosmic ray induced emission are determined by universal parameters, which make a combined statistical likelihood analysis feasible. We present initial results of this analysis leading to limits on the DM annihilation cross section or decay time and on the hadron injection efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا