ﻻ يوجد ملخص باللغة العربية
We define twisted Hochschild homology for Green functors. This construction is the algebraic analogue of the relative topological Hochschild homology $THH_{C_n}(-)$, and it describes the $E_2$ term of the Kunneth spectral sequence for relative $THH$. Applied to ordinary rings, we obtain new algebraic invariants. Extending Hesselholts construction of the Witt vectors of noncommutative rings, we interpret our construction as providing Witt vectors for Green functors.
We give a $K$-theoretic account of the basic properties of Witt vectors. Along the way we re-prove basic properties of the little-known Witt vector norm, give a characterization of Witt vectors in terms of algebraic $K$-theory, and a presentation of the Witt vectors that is useful for computation.
If $G$ has $4$-periodic cohomology, then D2 complexes over $G$ are determined up to polarised homotopy by their Euler characteristic if and only if $G$ has at most two one-dimensional quaternionic representations. We use this to solve Walls D2 proble
We extend the big and $p$-typical Witt vector functors from commutative rings to commutative semirings. In the case of the big Witt vectors, this is a repackaging of some standard facts about monomial and Schur positivity in the combinatorics of symm
This is an account of the algebraic geometry of Witt vectors and arithmetic jet spaces. The usual, p-typical Witt vectors of p-adic schemes of finite type are already reasonably well understood. The main point here is to generalize this theory in two
For an equivariant commutative ring spectrum $R$, $pi_0 R$ has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yie