ﻻ يوجد ملخص باللغة العربية
We present efficient realization of Generalized Givens Rotation (GGR) based QR factorization that achieves 3-100x better performance in terms of Gflops/watt over state-of-the-art realizations on multicore, and General Purpose Graphics Processing Units (GPGPUs). GGR is an improvement over classical Givens Rotation (GR) operation that can annihilate multiple elements of rows and columns of an input matrix simultaneously. GGR takes 33% lesser multiplications compared to GR. For custom implementation of GGR, we identify macro operations in GGR and realize them on a Reconfigurable Data-path (RDP) tightly coupled to pipeline of a Processing Element (PE). In PE, GGR attains speed-up of 1.1x over Modified Householder Transform (MHT) presented in the literature. For parallel realization of GGR, we use REDEFINE, a scalable massively parallel Coarse-grained Reconfigurable Architecture, and show that the speed-up attained is commensurate with the hardware resources in REDEFINE. GGR also outperforms General Matrix Multiplication (gemm) by 10% in-terms of Gflops/watt which is counter-intuitive.
We present efficient realization of Householder Transform (HT) based QR factorization through algorithm-architecture co-design where we achieve performance improvement of 3-90x in-terms of Gflops/watt over state-of-the-art multicore, General Purpose
In this paper, we present efficient realization of Kalman Filter (KF) that can achieve up to 65% of the theoretical peak performance of underlying architecture platform. KF is realized using Modified Faddeeva Algorithm (MFA) as a basic building block
Personalized PageRank (PPR) is a graph algorithm that evaluates the importance of the surrounding nodes from a source node. Widely used in social network related applications such as recommender systems, PPR requires real-time responses (latency) for
Basic Linear Algebra Subprograms (BLAS) play key role in high performance and scientific computing applications. Experimentally, yesteryear multicore and General Purpose Graphics Processing Units (GPGPUs) are capable of achieving up to 15 to 57% of t
Innovations in Next-Generation Sequencing are enabling generation of DNA sequence data at ever faster rates and at very low cost. Large sequencing centers typically employ hundreds of such systems. Such high-throughput and low-cost generation of data