ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of distorted skyrmions in strained chiral magnets

78   0   0.0 ( 0 )
 نشر من قبل Minghui Qin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the microscopic dynamics of distorted skyrmions in strained chiral magnets [K. Shibata et al., Nat. Nanotech. 10, 589 (2015)] under gradient magnetic field or electric current by Landau-Lifshitz-Gilbert simulations of the anisotropic spin model. It is observed that the dynamical responses are also anisotropic, and the velocities of the distorted skyrmions are periodically dependent on the directions of the external stimuli. Furthermore, in addition to the uniform motion, our work also demonstrates anti-phase harmonic vibrations of the two skyrmions in nanostripes, and the frequencies are mainly determined by the exchange anisotropy. The simulated results are well explained by Thiele theory, which may provide useful information in understanding the dynamics of the distorted skyrmions in strained chiral magnets.



قيم البحث

اقرأ أيضاً

We study the quantum propagation of a Skyrmion in chiral magnetic insulators by generalizing the micromagnetic equations of motion to a finite-temperature path integral formalism, using field theoretic tools. Promoting the center of the Skyrmion to a dynamic quantity, the fluctuations around the Skyrmionic configuration give rise to a time-dependent damping of the Skyrmion motion. From the frequency dependence of the damping kernel, we are able to identify the Skyrmion mass, thus providing a microscopic description of the kinematic properties of Skyrmions. When defects are present or a magnetic trap is applied, the Skyrmion mass acquires a finite value proportional to the effective spin, even at vanishingly small temperature. We demonstrate that a Skyrmion in a confined geometry provided by a magnetic trap behaves as a massive particle owing to its quasi-one-dimensional confinement. An additional quantum mass term is predicted, independent of the effective spin, with an explicit temperature dependence which remains finite even at zero temperature.
Recent developments have led to an explosion of activity on skyrmions in three-dimensional (3D) chiral magnets. Experiments have directly probed these topological spin textures, revealed their nontrivial properties, and led to suggestions for novel a pplications. However, in 3D the skyrmion crystal phase is observed only in a narrow region of the temperature-field phase diagram. We show here, using a general analysis based on symmetry, that skyrmions are much more readily stabilized in two-dimensional (2D) systems with Rashba spin-orbit coupling. This enhanced stability arises from the competition between field and easy-plane magnetic anisotropy and results in a nontrivial structure in the topological charge density in the core of the skyrmions. We further show that, in a variety of microscopic models for magnetic exchange, the required easy-plane anisotropy naturally arises from the same spin-orbit coupling that is responsible for the chiral Dzyaloshinskii-Moriya interactions. Our results are of particular interest for 2D materials like thin films, surfaces, and oxide interfaces, where broken surface-inversion symmetry and Rashba spin-orbit coupling naturally lead to chiral exchange and easy-plane compass anisotropy. Our theory gives a clear direction for experimental studies of 2D magnetic materials to stabilize skyrmions over a large range of magnetic fields down to T=0.
149 - Muhammad Akram , Onur Erten 2020
Magnetic skyrmions in 2D chiral magnets are in general stabilized by a combination of Dzyaloshinskii-Moriya interaction and external magnetic field. Here, we show that skyrmions can also be stabilized in twisted moire superlattices in the absence of an external magnetic field. Our setup consists of a 2D ferromagnetic layer twisted on top of an antiferromagnetic substrate. The coupling between the ferromagnetic layer and the substrate generates an effective alternating exchange field. We find a large region of skyrmion crystal phase when the length scales of the moire periodicity and skyrmions are compatible. Unlike chiral magnets under magnetic field, skyrmions in moire superlattices show enhanced stability for the easy-axis (Ising) anisotropy which can be essential to realize skyrmions since most van der Waals magnets possess easy-axis anisotropy.
229 - Ye-Hua Liu , You-Quan Li 2012
We propose a mechanism to pin skyrmions in chiral magnets by introducing local maximum of magnetic exchange strength, which can be realized in chiral magnetic thin films by engineering the local density of itinerate electrons. Thus we find a way to a rtificially control the position of a single skyrmion in chiral magnetic thin films. The stationary properties and the dynamical pinning and depinning processes of an isolated skyrmion around a pinning center are studied. We do a series of simulations to show that the critical current to depin a skyrmion has linearly dependence on the pinning strength. We also estimate the critical current to have order of magnitude 10^{7}sim10^{8}A/m^{2} .
Twisted skyrmions, whose helicity angles are different from that of Bloch skyrmions and Neel skyrmions, have already been demonstrated in experiments recently. In this work, we first contrast the magnetic structure and origin of the twisted skyrmion with other three types of skyrmion including Bloch skyrmion, Neel skyrmion and antiskyrmion. Following, we investigate the dynamics of twisted skyrmions driven by the spin transfer toque (STT) and the spin Hall effect (SHE) by using micromagnetic simulations. It is found that the spin Hall angle of the twisted skyrmion is related to the dissipative force tensor and the Gilbert damping both for the motions induced by the STT and the SHE, especially for the SHE induced motion, the skyrmion Hall angle depends substantially on the skyrmion helicity. At last, we demonstrate that the trajectory of the twisted skyrmion can be controlled in a two dimensional plane with a Gilbert damping gradient. Our results provide the understanding of current-induced motion of twisted skyrmions, which may contribute to the applications of skyrmion-based racetrack memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا