ﻻ يوجد ملخص باللغة العربية
One-dimensional Indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below $sim100$ K due to the formation of a Charge Density Wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photo-emission spectroscopy with extreme ultra-violet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within $sim660$ fs that is a fraction of the amplitude mode period. The long life time of the transient state ($>100$ ps) is attributed to trapping in a metastable state in accordance with previous work.
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding ener
We have performed angle-resolved photoemission spectroscopy (ARPES) of LaSb and CeSb, a candidate of topological insulator. Using soft-x-ray photons, we have accurately determined the three-dimensional bulk band structure and revealed that the band i
Single atoms and few-atom nanoclusters are of high interest in catalysis and plasmonics, but pathways for their fabrication and stable placement remain scarce. We report here the self-assembly of room-temperature-stable single indium (In) atoms and f
Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to
This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence