ترغب بنشر مسار تعليمي؟ اضغط هنا

Field Driven Quantum Criticality in the Spinel Magnet ZnCr$_2$Se$_4$

363   0   0.0 ( 0 )
 نشر من قبل X. F. Sun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr$_2$Se$_4$. At low temperatures, with increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum phase transition from the spiral spin state to the fully polarized state. As the system approaches the quantum criticality, we find strong quantum fluctuations of the spins with the behaviors such as an unconventional $T^2$-dependent specific heat and temperature independent mean free path for the thermal transport. We complete the full phase diagram of ZnCr$_2$Se$_4$ under the external magnetic field and propose the possibility of frustrated quantum criticality with extended densities of critical modes to account for the unusual low-energy excitations in the vicinity of the criticality. Our results reveal that ZnCr$_2$Se$_4$ is a rare example of 3D magnet exhibiting a field-driven quantum criticality with unconventional properties.



قيم البحث

اقرأ أيضاً

Muon spin rotation/relaxation spectroscopy %(supported by magnetization measurements) has been employed to study electron localization around a donor center - the positive muon - in the 3d magnetic spinel semiconductor CdCr$_2$Se$_4$ at temperatures from 2 to 300 K in magnetic fields up to 7 T. A bound state of an electron around a positive muon - a magnetic polaron - is detected far above the ferromagnetic transition up to 300 K. Electron localization into a magnetic polaron occurs due to its strong exchange interaction with the magnetic 3d electrons of local Cr$^{3+}$ ions, which confines its wave function within Rapprox 0.3 nm, allowing significant overlap with both the nearest and next nearest shells of Cr ions.
In the spinel compound GeCo$_2$O$_4$, the Co$^{2+}$ pyrochlore sublattice presents remarkable magnetic field-induced behaviors that we unveil through neutron and X-ray single-crystal diffraction. The Neel ordered magnetic phase is entered through a s tructural lowering of the cubic symmetry. In this phase, when a magnetic field is applied along a 2-fold cubic direction, a spin-flop transition of one fourth of the magnetic moments releases the magnetic frustration and triggers magnetostructural effects. At high field, these ultimately lead to an unusual spin reorientation associated to structural changes.
We report pressure-dependent reflection and transmission measurements on ZnCr$_2$Se$_4$, HgCr$_2$S$_4$, and CdCr$_2$O$_4$ single crystals at room temperature over a broad spectral range 200-24000 cm$^{-1}$. The pressure dependence of the phonon modes and the high-frequency electronic excitations indicates that all three compounds undergo a pressure-induced structural phase transition with the critical pressure 15 GPa, 12 GPa, and 10 GPa for CdCr$_2$O$_4$, HgCr$_2$S$_4$, and ZnCr$_2$Se$_4$, respectively. The eigenfrequencies of the electronic transitions are very close to the expected values for chromium crystal-field transitions. In the case of the chalcogenides pressure induces a red shift of the electronic excitation which indicates a strong hybridization of the Cr d-bands with the chalcogenide bands.
We demonstrate via a muon spin rotation experiment that the electronic ground state of the iridium spinel compound, CuIr$_2$S$_4$, is not the presumed spin-singlet state but a novel paramagnetic state, showing a quasistatic spin glass-like magnetism below ~100 K. Considering the earlier indication that IrS$_6$ octahedra exhibit dimerization associated with the metal-to-insulator transition below 230 K, the present result suggests that a strong spin-orbit interaction may be playing an important role in determining the ground state that accompanies magnetic frustration.
The frustrated magnet SrDy$_2$O$_4$ exhibits a field-induced phase with a magnetization plateau at $1/3$ of the saturation value for magnetic fields applied along the $b$-axis. We report here a neutron scattering study of the nature and symmetry of t he magnetic order in this field-induced phase. Below $Tapprox 0.5$ K, there are strong hysteretic effects, and the order is short or long ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zig-zag chains is identical to that expected for the one-dimensional axial next-nearest neighbour Ising (ANNNI) model in longitudinal field. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا