ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey of CH3CN and HC3N in Protoplanetary Disks

67   0   0.0 ( 0 )
 نشر من قبل Jennifer Bergner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The organic content of protoplanetary disks sets the initial compositions of planets and comets, thereby influencing subsequent chemistry that is possible in nascent planetary systems. We present observations of the complex nitrile-bearing species CH3CN and HC3N towards the disks around the T Tauri stars AS 209, IM Lup, LkCa 15, and V4046 Sgr as well as the Herbig Ae stars MWC 480 and HD 163296. HC3N is detected towards all disks except IM Lup, and CH3CN is detected towards V4046 Sgr, MWC 480, and HD 163296. Rotational temperatures derived for disks with multiple detected lines range from 29-73K, indicating emission from the temperate molecular layer of the disk. V4046 Sgr and MWC 480 radial abundance profiles are constrained using a parametric model; the gas-phase CH3CN and HC3N abundances with respect to HCN are a few to tens of percent in the inner 100 AU of the disk, signifying a rich nitrile chemistry at planet- and comet-forming disk radii. We find consistent relative abundances of CH3CN, HC3N, and HCN between our disk sample, protostellar envelopes, and solar system comets; this is suggestive of a robust nitrile chemistry with similar outcomes under a wide range of physical conditions.

قيم البحث

اقرأ أيضاً

Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densities of HC3N are typically two orders of magnitude lower than the existing predictions and appear to be lower in the presence of strong UV flux, suggesting that the molecular chemistry is sensitive to the UV penetration through the disk. The CCS upper limits reinforce our model with low elemental abundance of sulfur derived from other sulfur-bearing molecules (CS, H2S and SO).
Molecular lines observed towards protoplanetary disks carry information about physical and chemical processes associated with planet formation. We present ALMA Band 6 observations of C2H, HCN, and C18O in a sample of 14 disks spanning a range of ages , stellar luminosities, and stellar masses. Using C2H and HCN hyperfine structure fitting and HCN/H13CN isotopologue analysis, we extract optical depth, excitation temperature, and column density radial profiles for a subset of disks. C2H is marginally optically thick (tau ~1-5) and HCN is quite optically thick (tau ~ 5-10) in the inner 200 AU. The extracted temperatures of both molecules are low (10-30K), indicative of either sub-thermal emission from the warm disk atmosphere or substantial beam dilution due to chemical substructure. We explore the origins of C2H morphological diversity in our sample using a series of toy disk models, and find that disk-dependent overlap between regions with high UV fluxes and high atomic carbon abundances can explain a wide range of C2H emission features (e.g. compact vs. extended and ringed vs. ringless emission). We explore the chemical relationship between C2H, HCN, and C18O and find a positive correlation between C2H and HCN fluxes, but no relationship between C2H or HCN with C18O fluxes. We also see no evidence that C2H and HCN are enhanced with disk age. C2H and HCN seem to share a common driver, however more work remains to elucidate the chemical relationship between these molecules and the underlying evolution of C, N, and O chemistries in disks.
We present the first high-resolution sub-mm survey of both dust and gas for a large population of protoplanetary disks. Characterizing fundamental properties of protoplanetary disks on a statistical level is critical to understanding how disks evolve into the diverse exoplanet population. We use ALMA to survey 89 protoplanetary disks around stars with $M_{ast}>0.1~M_{odot}$ in the young (1--3~Myr), nearby (150--200~pc) Lupus complex. Our observations cover the 890~$mu$m continuum and the $^{13}$CO and C$^{18}$O 3--2 lines. We use the sub-mm continuum to constrain $M_{rm dust}$ to a few Martian masses (0.2--0.4~$M_{oplus}$) and the CO isotopologue lines to constrain $M_{rm gas}$ to roughly a Jupiter mass (assuming ISM-like $rm {[CO]/[H_2]}$ abundance). Of 89 sources, we detect 62 in continuum, 36 in $^{13}$CO, and 11 in C$^{18}$O at $>3sigma$ significance. Stacking individually undetected sources limits their average dust mass to $lesssim6$ Lunar masses (0.03~$M_{oplus}$), indicating rapid evolution once disk clearing begins. We find a positive correlation between $M_{rm dust}$ and $M_{ast}$, and present the first evidence for a positive correlation between $M_{rm gas}$ and $M_{ast}$, which may explain the dependence of giant planet frequency on host star mass. The mean dust mass in Lupus is 3$times$ higher than in Upper Sco, while the dust mass distributions in Lupus and Taurus are statistically indistinguishable. Most detected disks have $M_{rm gas}lesssim1~M_{rm Jup}$ and gas-to-dust ratios $<100$, assuming ISM-like $rm {[CO]/[H_2]}$ abundance; unless CO is very depleted, the inferred gas depletion indicates that planet formation is well underway by a few Myr and may explain the unexpected prevalence of super-Earths in the exoplanet population.
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplaneta ry disks around $sigma$ Orionis members with $M_{ast}gtrsim0.1 M_{odot}$. Our observations cover the 1.33 mm continuum and several CO $J=2-1$ lines: out of 92 sources, we detect 37 in the mm continuum and six in $^{12}$CO, three in $^{13}$CO, and none in C$^{18}$O. Using the continuum emission to estimate dust mass, we find only 11 disks with $M_{rm dust}gtrsim10 M_{oplus}$, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5$times$ lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in $sigma$ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the $M_{rm dust}$-$M_{ast}$ relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations $>1.5$ pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.
Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, ni trogen and oxygen. Volatiles are central to the process of planet formation, forming the backbone of a rich chemistry that sets the initial conditions for the formation of planetary atmospheres, and act as a solid mass reservoir catalyzing the formation of planets and planetesimals. This growth has been driven by rapid advances in observations and models of protoplanetary disks, and by a deepening understanding of the cosmochemistry of the solar system. Indeed, it is only in the past few years that representative samples of molecules have been discovered in great abundance throughout protoplanetary disks - enough to begin building a complete budget for the most abundant elements after hydrogen and helium. The spatial distributions of key volatiles are being mapped, snow lines are directly seen and quantified, and distinct chemical regions within protoplanetary disks are being identified, characterized and modeled. Theoretical processes invoked to explain the solar system record are now being observationally constrained in protoplanetary disks, including transport of icy bodies and concentration of bulk condensibles. The balance between chemical reset - processing of inner disk material strong enough to destroy its memory of past chemistry, and inheritance - the chemically gentle accretion of pristine material from the interstellar medium in the outer disk, ultimately determines the final composition of pre-planetary matter. This chapter focuses on making the first steps toward understanding whether the planet formation processes that led to our solar system are universal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا