ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmark 3D eye-tracking dataset for visual saliency prediction on stereoscopic 3D video

64   0   0.0 ( 0 )
 نشر من قبل Amin Banitalebi-Dehkordi
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual Attention Models (VAMs) predict the location of an image or video regions that are most likely to attract human attention. Although saliency detection is well explored for 2D image and video content, there are only few attempts made to design 3D saliency prediction models. Newly proposed 3D visual attention models have to be validated over large-scale video saliency prediction datasets, which also contain results of eye-tracking information. There are several publicly available eye-tracking datasets for 2D image and video content. In the case of 3D, however, there is still a need for large-scale video saliency datasets for the research community for validating different 3D-VAMs. In this paper, we introduce a large-scale dataset containing eye-tracking data collected from 61 stereoscopic 3D videos (and also 2

قيم البحث

اقرأ أيضاً

Over the past decade, many computational saliency prediction models have been proposed for 2D images and videos. Considering that the human visual system has evolved in a natural 3D environment, it is only natural to want to design visual attention m odels for 3D content. Existing monocular saliency models are not able to accurately predict the attentive regions when applied to 3D image/video content, as they do not incorporate depth information. This paper explores stereoscopic video saliency prediction by exploiting both low-level attributes such as brightness, color, texture, orientation, motion, and depth, as well as high-level cues such as face, person, vehicle, animal, text, and horizon. Our model starts with a rough segmentation and quantifies several intuitive observations such as the effects of visual discomfort level, depth abruptness, motion acceleration, elements of surprise, size and compactness of the salient regions, and emphasizing only a few salient objects in a scene. A new fovea-based model of spatial distance between the image regions is adopted for considering local and global feature calculations. To efficiently fuse the conspicuity maps generated by our method to one single saliency map that is highly correlated with the eye-fixation data, a random forest based algorithm is utilized. The performance of the proposed saliency model is evaluated against the results of an eye-tracking experiment, which involved 24 subjects and an in-house database of 61 captured stereoscopic videos. Our stereo video database as well as the eye-tracking data are publicly available along with this paper. Experiment results show that the proposed saliency prediction method achieves competitive performance compared to the state-of-the-art approaches.
In this work we present a novel publicly available stereo based 3D RGB dataset for multi-object zebrafish tracking, called 3D-ZeF. Zebrafish is an increasingly popular model organism used for studying neurological disorders, drug addiction, and more. Behavioral analysis is often a critical part of such research. However, visual similarity, occlusion, and erratic movement of the zebrafish makes robust 3D tracking a challenging and unsolved problem. The proposed dataset consists of eight sequences with a duration between 15-120 seconds and 1-10 free moving zebrafish. The videos have been annotated with a total of 86,400 points and bounding boxes. Furthermore, we present a complexity score and a novel open-source modular baseline system for 3D tracking of zebrafish. The performance of the system is measured with respect to two detectors: a naive approach and a Faster R-CNN based fish head detector. The system reaches a MOTA of up to 77.6%. Links to the code and dataset is available at the project page https://vap.aau.dk/3d-zef
High Dynamic Range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR (SHDR) database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.
Stereoscopic video technologies have been introduced to the consumer market in the past few years. A key factor in designing a 3D system is to understand how different visual cues and distortions affect the perceptual quality of stereoscopic video. T he ultimate way to assess 3D video quality is through subjective tests. However, subjective evaluation is time consuming, expensive, and in some cases not possible. The other solution is developing objective quality metrics, which attempt to model the Human Visual System (HVS) in order to assess perceptual quality. Although several 2D quality metrics have been proposed for still images and videos, in the case of 3D efforts are only at the initial stages. In this paper, we propose a new full-reference quality metric for 3D content. Our method mimics HVS by fusing information of both the left and right views to construct the cyclopean view, as well as taking to account the sensitivity of HVS to contrast and the disparity of the views. In addition, a temporal pooling strategy is utilized to address the effect of temporal variations of the quality in the video. Performance evaluations showed that our 3D quality metric quantifies quality degradation caused by several representative types of distortions very accurately, with Pearson correlation coefficient of 90.8 %, a competitive performance compared to the state-of-the-art 3D quality metrics.
104 - Huanjing Yue , Cong Cao , Lei Liao 2020
In recent years, the supervised learning strategy for real noisy image denoising has been emerging and has achieved promising results. In contrast, realistic noise removal for raw noisy videos is rarely studied due to the lack of noisy-clean pairs fo r dynamic scenes. Clean video frames for dynamic scenes cannot be captured with a long-exposure shutter or averaging multi-shots as was done for static images. In this paper, we solve this problem by creating motions for controllable objects, such as toys, and capturing each static moment for multiple times to generate clean video frames. In this way, we construct a dataset with 55 groups of noisy-clean videos with ISO values ranging from 1600 to 25600. To our knowledge, this is the first dynamic video dataset with noisy-clean pairs. Correspondingly, we propose a raw video denoising network (RViDeNet) by exploring the temporal, spatial, and channel correlations of video frames. Since the raw video has Bayer patterns, we pack it into four sub-sequences, i.e RGBG sequences, which are denoised by the proposed RViDeNet separately and finally fused into a clean video. In addition, our network not only outputs a raw denoising result, but also the sRGB result by going through an image signal processing (ISP) module, which enables users to generate the sRGB result with their favourite ISPs. Experimental results demonstrate that our method outperforms state-of-the-art video and raw image denoising algorithms on both indoor and outdoor videos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا