ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Video Quality Assessment

65   0   0.0 ( 0 )
 نشر من قبل Amin Banitalebi-Dehkordi
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A key factor in designing 3D systems is to understand how different visual cues and distortions affect the perceptual quality of 3D video. The ultimate way to assess video quality is through subjective tests. However, subjective evaluation is time consuming, expensive, and in most cases not even possible. An alternative solution is objective quality metrics, which attempt to model the Human Visual System (HVS) in order to assess the perceptual quality. The potential of 3D technology to significantly improve the immersiveness of video content has been hampered by the difficulty of objectively assessing Quality of Experience (QoE). A no-reference (NR) objective 3D quality metric, which could help determine capturing parameters and improve playback perceptual quality, would be welcomed by camera and display manufactures. Network providers would embrace a full-reference (FR) 3D quality metric, as they could use it to ensure efficient QoE-based resource management during compression and Quality of Service (QoS) during transmission.



قيم البحث

اقرأ أيضاً

The attention mechanism is blooming in computer vision nowadays. However, its application to video quality assessment (VQA) has not been reported. Evaluating the quality of in-the-wild videos is challenging due to the unknown of pristine reference an d shooting distortion. This paper presents a novel underline{s}pace-underline{t}ime underline{a}ttention network founderline{r} the underline{VQA} problem, named StarVQA. StarVQA builds a Transformer by alternately concatenating the divided space-time attention. To adapt the Transformer architecture for training, StarVQA designs a vectorized regression loss by encoding the mean opinion score (MOS) to the probability vector and embedding a special vectorized label token as the learnable variable. To capture the long-range spatiotemporal dependencies of a video sequence, StarVQA encodes the space-time position information of each patch to the input of the Transformer. Various experiments are conducted on the de-facto in-the-wild video datasets, including LIVE-VQC, KoNViD-1k, LSVQ, and LSVQ-1080p. Experimental results demonstrate the superiority of the proposed StarVQA over the state-of-the-art. Code and model will be available at: https://github.com/DVL/StarVQA.
Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the a utomated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.
231 - Fan Zhang , David R. Bull 2021
This paper describes a quality assessment model for perceptual video compression applications (PVM), which stimulates visual masking and distortion-artefact perception using an adaptive combination of noticeable distortions and blurring artefacts. Th e method shows significant improvement over existing quality metrics based on the VQEG database, and provides compatibility with in-loop rate-quality optimisation for next generation video codecs due to its latency and complexity attributes. Performance comparison are validated against a range of different distortion types.
To improve the viewers Quality of Experience (QoE) and optimize computer graphics applications, 3D model quality assessment (3D-QA) has become an important task in the multimedia area. Point cloud and mesh are the two most widely used digital represe ntation formats of 3D models, the visual quality of which is quite sensitive to lossy operations like simplification and compression. Therefore, many related studies such as point cloud quality assessment (PCQA) and mesh quality assessment (MQA) have been carried out to measure the caused visual quality degradations. However, a large part of previous studies utilizes full-reference (FR) metrics, which means they may fail to predict the quality level with the absence of the reference 3D model. Furthermore, few 3D-QA metrics are carried out to consider color information, which significantly restricts the effectiveness and scope of application. In this paper, we propose a no-reference (NR) quality assessment metric for colored 3D models represented by both point cloud and mesh. First, we project the 3D models from 3D space into quality-related geometry and color feature domains. Then, the natural scene statistics (NSS) and entropy are utilized to extract quality-aware features. Finally, the Support Vector Regressor (SVR) is employed to regress the quality-aware features into quality scores. Our method is mainly validated on the colored point cloud quality assessment database (SJTU-PCQA) and the colored mesh quality assessment database (CMDM). The experimental results show that the proposed method outperforms all the state-of-art NR 3D-QA metrics and obtains an acceptable gap with the state-of-art FR 3D-QA metrics.
We propose a new prototype model for no-reference video quality assessment (VQA) based on the natural statistics of space-time chips of videos. Space-time chips (ST-chips) are a new, quality-aware feature space which we define as space-time localized cuts of video data in directions that are determined by the local motion flow. We use parametrized distribution fits to the bandpass histograms of space-time chips to characterize quality, and show that the parameters from these models are affected by distortion and can hence be used to objectively predict the quality of videos. Our prototype method, which we call ChipQA-0, is agnostic to the types of distortion affecting the video, and is based on identifying and quantifying deviations from the expected statistics of natural, undistorted ST-chips in order to predict video quality. We train and test our resulting model on several large VQA databases and show that our model achieves high correlation against human judgments of video quality and is competitive with state-of-the-art models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا