ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Rank Variation Dictionary and Inverse Projection Group Sparse Representation Model for Breast Tumor Classification

98   0   0.0 ( 0 )
 نشر من قبل Xiaohui Yang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sparse representation classification achieves good results by addressing recognition problem with sufficient training samples per subject. However, SRC performs not very well for small sample data. In this paper, an inverse-projection group sparse representation model is presented for breast tumor classification, which is based on constructing low-rank variation dictionary. The proposed low-rank variation dictionary tackles tumor recognition problem from the viewpoint of detecting and using variations in gene expression profiles of normal and patients, rather than directly using these samples. The inverse projection group sparsity representation model is constructed based on taking full using of exist samples and group effect of microarray gene data. Extensive experiments on public breast tumor microarray gene expression datasets demonstrate the proposed technique is competitive with state-of-the-art methods. The results of Breast-1, Breast-2 and Breast-3 databases are 80.81%, 89.10% and 100% respectively, which are better than the latest literature.

قيم البحث

اقرأ أيضاً

Microarray gene expression data-based tumor classification is an active and challenging issue. In this paper, an integrated tumor classification framework is presented, which aims to exploit information in existing available samples, and focuses on t he small sample problem and unbalanced classification problem. Firstly, an inverse space sparse representation based classification (ISSRC) model is proposed by considering the characteristics of gene-based tumor data, such as sparsity and a small number of training samples. A decision information factors (DIF)-based gene selection method is constructed to enhance the representation ability of the ISSRC. It is worth noting that the DIF is established from reducing clinical misdiagnosis rate and dimension of small sample data. For further improving the representation ability and classification stability of the ISSRC, feature learning is conducted on the selected gene subset. The feature learning method is constructed by complementing the advantages of non-negative matrix factorization (NMF) and deep learning. Without confusion, the ISSRC combined with gene selection and feature learning is called the integrated ISSRC, whose stability, optimization and the corresponding convergence are analyzed. Extensive experiments on six public microarray gene expression datasets show the integrated ISSRC-based tumor classification framework is superior to classical and state-of-the-art methods. There are significant improvements in classification accuracy, specificity and sensitivity, whether there is a tumor in the early diagnosis, what kind of tumor, or whether metastasis occurs after tumor surgery.
Sparse representation based classification (SRC) methods have achieved remarkable results. SRC, however, still suffer from requiring enough training samples, insufficient use of test samples and instability of representation. In this paper, a stable inverse projection representation based classification (IPRC) is presented to tackle these problems by effectively using test samples. An IPR is firstly proposed and its feasibility and stability are analyzed. A classification criterion named category contribution rate is constructed to match the IPR and complete classification. Moreover, a statistical measure is introduced to quantify the stability of representation-based classification methods. Based on the IPRC technique, a robust tumor recognition framework is presented by interpreting microarray gene expression data, where a two-stage hybrid gene selection method is introduced to select informative genes. Finally, the functional analysis of candidates pathogenicity-related genes is given. Extensive experiments on six public tumor microarray gene expression datasets demonstrate the proposed technique is competitive with state-of-the-art methods.
In this paper, we propose a novel classification scheme for the remotely sensed hyperspectral image (HSI), namely SP-DLRR, by comprehensively exploring its unique characteristics, including the local spatial information and low-rankness. SP-DLRR is m ainly composed of two modules, i.e., the classification-guided superpixel segmentation and the discriminative low-rank representation, which are iteratively conducted. Specifically, by utilizing the local spatial information and incorporating the predictions from a typical classifier, the first module segments pixels of an input HSI (or its restoration generated by the second module) into superpixels. According to the resulting superpixels, the pixels of the input HSI are then grouped into clusters and fed into our novel discriminative low-rank representation model with an effective numerical solution. Such a model is capable of increasing the intra-class similarity by suppressing the spectral variations locally while promoting the inter-class discriminability globally, leading to a restored HSI with more discriminative pixels. Experimental results on three benchmark datasets demonstrate the significant superiority of SP-DLRR over state-of-the-art methods, especially for the case with an extremely limited number of training pixels.
Breast cancer is the most common invasive cancer in women, and the second main cause of death. Breast cancer screening is an efficient method to detect indeterminate breast lesions early. The common approaches of screening for women are tomosynthesis and mammography images. However, the traditional manual diagnosis requires an intense workload by pathologists, who are prone to diagnostic errors. Thus, the aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images. Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture. Finally, the precision and accuracy of the model is evaluated by cross validation matrix and AUC curve. To summarize, the findings of this study may provide a helpful to improve the diagnosis and efficiency in the automatic tumor localization through the medical image classification.
Sparse coding with dictionary learning (DL) has shown excellent classification performance. Despite the considerable number of existing works, how to obtain features on top of which dictionaries can be better learned remains an open and interesting q uestion. Many current prevailing DL methods directly adopt well-performing crafted features. While such strategy may empirically work well, it ignores certain intrinsic relationship between dictionaries and features. We propose a framework where features and dictionaries are jointly learned and optimized. The framework, named joint non-negative projection and dictionary learning (JNPDL), enables interaction between the input features and the dictionaries. The non-negative projection leads to discriminative parts-based object features while DL seeks a more suitable representation. Discriminative graph constraints are further imposed to simultaneously maximize intra-class compactness and inter-class separability. Experiments on both image and image set classification show the excellent performance of JNPDL by outperforming several state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا