ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbative generation of photon Lorentz violating terms from a pseudo-tensor Lorentz-breaking extension of QED

63   0   0.0 ( 0 )
 نشر من قبل A. Yu. Petrov
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an extended QED with the addition of a dimension-five Lorentz-breaking coupling between spinor and gauge fields, involving a pseudo-tensor $kappa^{mu ulambdarho}$. The specific form of the Lorentz violating coupling considered by us have been suggested in other works, and some of its consequences at the classical level were already studied. Here, we investigate the consequences of this specific form of Lorentz violation at the quantum level, evaluating the one loop corrections to the gauge field two-point function, both at zero and at finite temperature. We relate the terms that are generated by quantum corrections with the photon sector of the Standard Model Extension, discussing the possibility of establishing experimental bounds on $k^{mu urhosigma}$. From the dispersion relations in the resulting theory, we discuss its consistency from the causality viewpoint.

قيم البحث

اقرأ أيضاً

We reassess an alternative CPT-odd electrodynamics obtained from a Palatini-like procedure. Starting from a more general situation, we analyze the physical consistency of the model for different values of the parameter introduced in the mass tensor. We show that there is a residual gaugeinvariance in the model if the local transformation is taken to vary only in the direction of the Lorentz-breaking vector.
We investigate an alternative CPT-odd Lorentz-breaking QED which includes the Carroll-Field-Jackiw (CFJ) term of the Standard Model Extension (SME), writing the gauge sector in the action in a Palatini-like form, in which the vectorial field and the field-strength tensor are treated as independent entities. Interestingly, this naturally induces a Lorentz-violating mass term in the classical action. We study physical consistency aspects of the model both at classical and quantum levels.
This paper presents divergent contributions of the radiative corrections for a Lorentz-violating extension of the scalar electrodynamics. We initially discuss some features of the model and extract the Feynman rules. Then we compute the one-loop radi ative corrections using Feynman parametrization and dimensional regularization in order to evaluate the integrals. We also discuss Furrys theorem validity and renormalization in the present context.
The issue intensively claimed in the literature on the generation of a CPT-odd and Lorentz violating Chern-Simons-like term by radiative corrections owing to a CPT violating interaction -- the axial coupling of fermions with a constant vector field $ b_m$ -- is mistaken. The presence of massless gauge field triggers IR divergences that might show up from the UV subtractions, therefore, so as to deal with the (actual physical) IR divergences, the Lowenstein-Zimmermann subtraction scheme, in the framework of BPHZL renormalization method, has to be adopted. The proof on the non generation of such a Chern-Simons-like term is done, independent of any kind of regularization scheme, at all orders in perturbation theory.
Light pseudoscalars, or axion like particles (ALPs), are much studied due to their potential relevance to the fields of particle physics, astrophysics and cosmology. The most relevant coupling of ALPs from the viewpoint of current experimental search es is to the photon: in this work, we study the generation of this coupling as an effect of quantum corrections, originated from an underlying Lorentz violating background. Most interestingly, we show that the interaction so generated turns out to be Lorentz invariant, thus mimicking the standard ALPs coupling to the photon that is considered in the experiments. This consideration implies that violations of spacetime symmetries, much studied as possible consequences of physics in very high energy scales, might infiltrate in other realms of physics in unsuspected ways. Additionally, we conjecture that a similar mechanism can also generate Lorentz invariant couplings involving scalar particles and photons, playing a possible role in the phenomenology of Higgs bosons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا