ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-Eruptive Magnetic Reconnection within a Multi-Flux-Rope System in the Solar Corona

130   0   0.0 ( 0 )
 نشر من قبل Rui Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a standard picture although it remains elusive how the flux rope forms and evolves toward eruption. While 1/3 of the ejecta passing through spacecrafts demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bi-directional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degree of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.



قيم البحث

اقرأ أيضاً

One of the major discoveries of Hinodes Extreme-ultraviolet Imaging Spectrometer (EIS) is the presence of upflows at the edges of active regions. As active regions are magnetically connected to the large-scale field of the corona, these upflows are a likely contributor to the global mass cycle in the corona. Here we examine the driving mechanism(s) of the very strong upflows with velocities in excess of 70 km/s, known as blue-wing asymmetries, observed during the eruption of a flux rope in AR 10977 (eruptive flare SOL2007-12-07T04:50). We use Hinode/EIS spectroscopic observations combined with magnetic-field modeling to investigate the possible link between the magnetic topology of the active region and the strong upflows. A Potential Field Source Surface (PFSS) extrapolation of the large-scale field shows a quadrupolar configuration with a separator lying above the flux rope. Field lines formed by induced reconnection along the separator before and during the flux-rope eruption are spatially linked to the strongest blue-wing asymmetries in the upflow regions. The flows are driven by the pressure gradient created when the dense and hot arcade loops of the active region reconnect with the extended and tenuous loops overlying it. In view of the fact that separator reconnection is a specific form of the more general quasi-separatrix (QSL) reconnection, we conclude that the mechanism driving the strongest upflows is, in fact, the same as the one driving the persistent upflows of approx. 10 - 20 km/s observed in all active regions.
217 - X. Cheng , M. D. Ding , J. Zhang 2014
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmos pheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1--0.6 km s$^{-1}$. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About two hours before the eruption, indications for a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.
In this article, we review some key aspects of a multi-wavelength flare which have essentially contributed to form a standard flare model based on the magnetic reconnection. The emphasis is given on the recent observations taken by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on the X-ray emission originating from different regions of the coronal loops. We also briefly summarize those observations which do not seem to accommodate within the canonical flare picture and discuss the challenges for future investigations.
Using multiwavelength imaging observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) on 03 May 2012, we present a novel physical scenario for the formation of a temporary X-point in the solar corona, whe re plasma dynamics is forced externally by a moving prominence. Natural diffusion was not predominant, however, a prominence driven inflow occurred firstly, forming a thin current sheet and thereafter enabling a forced magnetic reconnection at a considerably high rate. Observations in relation to the numerical model reveal that forced reconnection may rapidly and efficiently occur at higher rates in the solar corona. This physical process may also heat the corona locally even without establishing a significant and self-consistent diffusion region. Using a parametric numerical study, we demonstrate that the implementation of the external driver increases the rate of the reconnection even when the resistivity required for creating normal diffusion region decreases at the X-point. We conjecture that the appropriate external forcing can bring the oppositely directed field lines into the temporarily created diffusion region firstly via the plasma inflows as seen in the observations. The reconnection and related plasma outflows may occur thereafter at considerably larger rates.
157 - Y. Chen , Y. Q. Hu , S. J. Sun 2007
It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may b e abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the system, or by a fast magnetic reconnection across preexisting or rapidly-developing electric current sheets. Both ways of magnetic energy release are thought to be important to CME dynamics. To disentangle their contributions, we construct a flux rope catastrophe model in the corona and solar wind and compare different cases in which we either prohibit or allow magnetic reconnection to take place across rapidly-growing current sheets during the eruption. It is demonstrated that CMEs, even fast ones, can be produced taking the ideal MHD catastrophe as the only process of magnetic energy release. Nevertheless, the eruptive speed can be significantly enhanced after magnetic reconnection sets in. In addition, a smooth transition from slow to fast eruptions is observed when increasing the strength of the background magnetic field, simply because in a stronger field there is more free magnetic energy at the catastrophic point available to be released during an eruption. This suggests that fast and slow CMEs may have an identical driving mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا