ترغب بنشر مسار تعليمي؟ اضغط هنا

Exoplanet Diversity in the Era of Space-based Direct Imaging Missions

394   0   0.0 ( 0 )
 نشر من قبل Ravi Kumar Kopparapu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This whitepaper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planets atmosphere that classifies them with respect to planetary radius and incident stellar flux.

قيم البحث

اقرأ أيضاً

Instrumentation techniques in the field of direct imaging of exoplanets have greatly advanced over the last two decades. Two of the four NASA-commissioned large concept studies involve a high-contrast instrument for the imaging and spectral character ization of exo-Earths from space: LUVOIR and HabEx. This whitepaper describes the status of 8 optical testbeds in the US and France currently in operation to experimentally validate the necessary technologies to image exo-Earths from space. They explore two complementary axes of research: (i) coronagraph designs and manufacturing and (ii) active wavefront correction methods and technologies. Several instrument architectures are currently being analyzed in parallel to provide more degrees of freedom for designing the future coronagraphic instruments. The necessary level of performance has already been demonstrated in-laboratory for clear off-axis telescopes (HabEx-like) and important efforts are currently in development to reproduce this accomplishment on segmented and/or on-axis telescopes (LUVOIR-like) over the next two years.
72 - Thayne Currie 2019
Ground-based telescopes coupled with adaptive optics (AO) have been playing a leading role in exoplanet direct imaging science and technological development for the past two decades and will continue to have an indispensable role for the next decade and beyond. Over the next decade, extreme AO systems on 8-10m telescopes will 1) mitigate risk for WFIRST-CGI by identifying numerous planets the mission can spectrally characterize, 2) validate performance requirements and motivate improvements to atmosphere models needed to unambiguously characterize solar system-analogues from space, and 3) mature novel technological innovations useful for space. Extremely Large Telescopes can deliver the first thermal infrared (10 $mu m$) images of rocky planets around Sun-like stars and identify biomarkers. These data provide a future NASA direct imaging flagship mission (i.e. HabEx, LUVOIR) with numerous exo-Earth candidates and critical ancillary information to help clarify whether these planets are habitable.
168 - Emese Plachy 2017
Cepheid stars are crucial objects for a variety of topics that range from stellar pulsation and the evolution of intermediate-mass stars to the understanding the structure of the Galaxy and the Universe through the distance measurements they provide. The developments in hydrodynamical calculations, the release of large ground-based surveys, and the advent of continuous, space-based photometry revealed many puzzling phenomena about these stars in the last few years. In this paper I collected some important and new results in the topics of distance measurements and binarity investigations. I also summarize the most recent discoveries in their light variations, such as period doubling, modulation, low-amplitude additional modes, period jitter and the signs of granulation, and discuss the new opportunities that current and future space missions will offer for us.
In the last decade, about a dozen giant exoplanets have been directly imaged in the IR as companions to young stars. With photometry and spectroscopy of these planets in hand from new extreme coronagraphic instruments such as SPHERE at VLT and GPI at Gemini, we are beginning to characterize and classify the atmospheres of these objects. Initially, it was assumed that young planets would be similar to field brown dwarfs, more massive objects that nonetheless share similar effective temperatures and compositions. Surprisingly, young planets appear considerably redder than field brown dwarfs, likely a result of their low surface gravities and indicating much different atmospheric structures. Preliminarily, young free-floating planets appear to be as or more variable than field brown dwarfs, due to rotational modulation of inhomogeneous surface features. Eventually, such inhomogeneity will allow the top of atmosphere structure of these objects to be mapped via Doppler imaging on extremely large telescopes. Direct imaging spectroscopy of giant exoplanets now is a prelude for the study of habitable zone planets. Eventual direct imaging spectroscopy of a large sample of habitable zone planets with future telescopes such as LUVOIR will be necessary to identify multiple biosignatures and establish habitability for Earth-mass exoplanets in the habitable zones of nearby stars.
With the imminent start of the Legacy Survey for Space and Time (LSST) on the Vera C. Rubin Observatory, and several new space telescopes expected to begin operations later in this decade, both time domain and wide-field astronomy are on the threshol d of a new era. In this paper, we use a new, multi-component model for the distribution of white dwarfs (WDs) in our Galaxy to simulate the WD populations in four upcoming wide-field surveys (i.e., LSST, Euclid, the Roman Space Telescope and CASTOR) and use the resulting samples to explore some representative WD science cases. Our results confirm that LSST will provide a wealth of information for Galactic WDs, detecting more than 150 million WDs at the final depth of its stacked, 10-year survey. Within this sample, nearly 300,000 objects will have 5$sigma$ parallax measurements and nearly 7 million will have 5$sigma$ proper motion measurements, allowing the detection of the turn-off in the halo WD luminosity function and the discovery of more than 200,000 ZZ Ceti stars. The wide wavelength coverage that will be possible by combining LSST data with observations from Euclid, and/or the Roman Space Telescope, will also discover more than 3,500 WDs with debris disks, highlighting the advantages of combining data between the ground- and space-based missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا