ﻻ يوجد ملخص باللغة العربية
Massive stars play a key role in the evolution of the Universe. Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosphere models. We used a sample of 53 objects with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, using optical spectroscopy and applying the FASTWIND code. For the remaining objects, literature data, obtained by means of the CMFGEN code, were used instead. The properties of our sample were compared to published predictions based on two grids evolution models that include rotationally induced mixing. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, a correlation of the surface nitrogen and helium abundances is observed. The large number of nitrogen-enriched stars above ~30 solar masses argues for rotationally induced mixing as the most likely explanation. However, none of the considered models can match the observed trends correctly, especially in the high mass regime. We confirm mass discrepancy for objects in the low mass O-star regime. We conclude that the rotationally induced mixing of helium to the stellar surface is too strong in some of the models. We also suggest that present inadequacies of the models to represent the N enrichment in more massive stars with relatively slow rotation might be related to problematic efficiencies of rotational mixing. We are left with a picture in which invoking binarity and magnetic fields is required to achieve a more complete agreement of the observed surface properties of a population of massive main- sequence stars with corresponding evolutionary models.
Context. The mass discrepancy in massive O stars represents a long-standing problem in stellar astrophysics with far-reaching implications for the chemical and dynamical feedback in galaxies. Aims. Our goal is to investigate this mass discrepancy by
This is the third installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R~2500 digital observations selected from the Galactic O-Star Catalog (GOSC). In this paper we present 1
We present first results from the quantitative spectroscopic analysis of 266 Galactic O-type stars targeted by the IACOB and OWN surveys (implying the largest sample of stars of this type analyzed homogeneously). We also evaluate what is the present
High resolution optical spectra of 57 Galactic B-type supergiant stars have been analyzed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulen
Recent studies of O-type stars demonstrated that discrepant mass-loss rates are obtained when different diagnostic methods are employed - fitting the unsaturated UV resonance lines (e.g. P v) gives drastically lower values than obtained from the H{al