ترغب بنشر مسار تعليمي؟ اضغط هنا

Ramsey Interferometry based on stimulated Brillouin scattering

91   0   0.0 ( 0 )
 نشر من قبل Jian-Qi Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Realizing highly sensitive interferometry is essential to accurate observation of quantum properties. Here we study two kinds of Ramsey interference fringes in a whispering-gallery resonator, where the coherent phonons for free evolution can be achieved by stimulated Brillouin scattering. These two different fringes appear, respectively, in the regimes of rotating wave approximation (RWA) and anti-RWA. Our work shows particularly that the anti-RWA Ramsey interference takes some quantum properties of squeezing, which enhances the strength and visibility of the fringes and shows robustness against the systems decay. In application, our proposal, feasible with current laboratory techniques, provides a practical idea for building better quantum interferometers.



قيم البحث

اقرأ أيضاً

A novel photonic approach to the time-frequency analysis of microwave signals is proposed based on the stimulated Brillouin scattering (SBS)-assisted frequency-to-time mapping (FTTM). Two types of time-frequency analysis links, namely parallel SBS li nk and time-division SBS link are proposed. The parallel SBS link can be utilized to perform real-time time-frequency analysis of microwave signal, which provides a promising solution for real-time time-frequency analysis, especially when it is combined with the photonic integration technique. A simulation is made to verify its feasibility by analyzing signals in multiple formats. The time-division SBS link has a simpler and reconfigurable structure, which can realize an ultra-high-resolution time-frequency analysis for periodic signals using the time segmentation and accumulation technique. An experiment is performed for the time-division SBS link. The multi-dimensional reconfigurability of the system is experimentally studied. An analysis bandwidth of 3.9 GHz, an analysis frequency up to 20 GHz, and a frequency resolution of 15 MHz are demonstrated, respectively.
A generalized Wigner-Moyal statistical theory of radiation is used to obtain a general dispersion relation for Stimulated Brillouin Scattering (SBS) driven by a broadband radiation field with arbitrary statistics. The monochromatic limit is recovered from our general result, reproducing the classic monochromatic dispersion relation. The behavior of the growth rate of the instability as a simultaneous function of the bandwidth of the pump wave, the intensity of the incident field and the wave number of the scattered wave is further explored by numerically solving the dispersion relation. Our results show that the growth rate of SBS can be reduced by 1/3 for a bandwidth of 0.3 nm, for typical experimental parameters.
We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describ e the SBS properties of the material at long wavelengths. Using the electromagnetic and strain energy densities we accurately characterise the optical and acoustic properties of the metamaterial. From a combination of energy density methods and perturbation theory, we recover the appropriate terms of the photoelastic tensor for the metamaterial. We demonstrate that electrostriction is not necessarily the dominant mechanism in the enhancement and suppression of the SBS gain coefficient in a metamaterial, and that other parameters, such as the Brillouin linewidth, can dominate instead. Examples are presented that exhibit an order of magnitude enhancement in the SBS gain as well as perfect suppression.
Plasma-based parametric amplification using stimulated Brillouin scattering offers a route to coherent x-ray pulses orders-of-magnitude more intense than those of the brightest available sources. Brillouin amplification permits amplification of short er wavelengths with lower pump intensities than Raman amplification, which Landau and collisional damping limit in the x-ray regime. Analytic predictions, numerical solutions of the three-wave coupling equations, and particle-in-cell simulations suggest that Brillouin amplification in solid-density plasmas will allow compression of current x-ray free electron laser pulses to sub-femtosecond durations and unprecedented intensities.
66 - Taixia Shi , Yang Chen 2021
A photonic-assisted multiple radio frequency (RF) measurement approach based on stimulated Brillouin scattering (SBS) and frequency-to-time mapping with high accuracy and high-frequency resolution is reported. A two-tone signal is single-sideband (SS B) modulated on an optical carrier via a dual-parallel Mach-Zehnder modulator to construct one SBS gain and two SBS losses for SBS gain bandwidth reduction. The unknown RF signal is also SSB modulated on a carrier that has been modulated by a sweep signal, thus the unknown RF signal is converted to a sweep optical signal along with the sweep optical carrier. The bandwidth-reduced SBS gain spectrum is detected by the sweep optical signals at different specific time, mapping the RF frequencies to the time domain. An experiment is performed. RF frequencies from 0.3 to 7.6 GHz are simultaneously measured with a root mean square error of less than 1 MHz. In addition, the frequency resolution of the measurement can be much lower than 10 MHz, which is now the best result in the RF frequency measurement methods employing the SBS effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا