ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear-recoil energy scale in CDMS II silicon dark-matter detectors

81   0   0.0 ( 0 )
 نشر من قبل Michael Bowles
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

قيم البحث

اقرأ أيضاً

The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed $text it{in situ}$ in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. The nuclear recoil energy from the first neutron scatter in the TPC was reconstructed using the measured scattering angle defined by double-scatter neutron events within the active xenon volume. We measured the absolute charge ($Q_{y}$) and light ($L_{y}$) yields at an average electric field of 180 V/cm for nuclear recoil energies spanning 0.7 to 74 keV and 1.1 to 74 keV, respectively. This calibration of the nuclear recoil signal yields will permit the further refinement of liquid xenon nuclear recoil signal models and, importantly for dark matter searches, clearly demonstrates measured ionization and scintillation signals in this medium at recoil energies down to $mathcal{O}$(1 keV).
90 - J. Amare , J. Castel , S. Cebrian 2017
The direct detection of dark matter particles requires ultra-low background conditions at energies below a few tens of keV. Radioactive isotopes are produced via cosmogenic activation in detectors and other materials and those isotopes constitute a b ackground source which has to be under control. In particular, tritium is specially relevant due to its decay properties (very low endpoint energy and long half-life) when induced in the detector medium, and because it can be generated in any material as a spallation product. Quantification of cosmogenic production of tritium is not straightforward, neither experimentally nor by calculations. In this work, a method for the calculation of production rates at sea level has been developed and applied to some of the materials typically used as targets in dark matter detectors (germanium, sodium iodide, argon and neon); it is based on a selected description of tritium production cross sections over the entire energy range of cosmic nucleons. Results have been compared to available data in the literature, either based on other calculations or from measurements. The obtained tritium production rates, ranging from a few tens to a few hundreds of nuclei per kg and per day at sea level, point to a significant contribution to the background in dark matter experiments, requiring the application of specific protocols for target material purification, material storing underground and limiting the time the detector is on surface during the building process in order to minimize the exposure to the most dangerous cosmic ray components.
Now that conventional weakly interacting massive particle (WIMP) dark matter searches are approaching the neutrino floor, there has been a resurgence of interest in detectors with sensitivity to nuclear recoil directions. A large-scale directional de tector is attractive in that it would have sensitivity below the neutrino floor, be capable of unambiguously establishing the galactic origin of a purported dark matter signal, and could serve a dual purpose as a neutrino observatory. We present the first detailed analysis of a 1000 m$^3$-scale detector capable of measuring a directional nuclear recoil signal at low energies. We propose a modular and multi-site observatory consisting of time projection chambers (TPCs) filled with helium and SF$_6$ at atmospheric pressure. Depending on the TPC readout technology, 10-20 helium recoils above 6 keVr or only 3-4 recoils above 20 keVr would suffice to distinguish a 10 GeV WIMP signal from the solar neutrino background. High-resolution charge readout also enables powerful electron background rejection capabilities well below 10 keV. We detail background and site requirements at the 1000 m$^3$-scale, and identify materials that require improved radiopurity. The final experiment, which we name CYGNUS-1000, will be able to observe 10-40 neutrinos from the Sun, depending on the final energy threshold. With the same exposure, the sensitivity to spin independent cross sections will extend into presently unexplored sub-10 GeV parameter space. For spin dependent interactions, already a 10 m$^3$-scale experiment could compete with upcoming generation-two detectors, but CYGNUS-1000 would improve upon this considerably. Larger volumes would bring sensitivity to neutrinos from an even wider range of sources, including galactic supernovae, nuclear reactors, and geological processes.
More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.
The nature of dark matter is still an open problem, but there is evidence that a large part of the dark matter in the universe is non-baryonic, non-luminous and non-relativistic and hypothetical Weakly Interacting Massive Particles (WIMPs) are candid ates that satisfy all of the above criteria. In order to minimize the ambiguities in the identification of WIMPs interactions in their search, in more experiments, two distinct quantities are simultaneously measured: the ionization and phonon or light from scintillation signals. Silicon and germanium crystals are used in some experiments. In this paper we discuss the production of defects in semiconductors due to WIMP interactions and estimate their contribution in the energy balance. This phenomenon is present at all temperatures, is important in the range of keV energies, but is not taken into consideration in the usual analysis of experimental signals and could introduce errors in identification for WIMPs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا