ﻻ يوجد ملخص باللغة العربية
A picoammeter system has been developed and engineering. It consists in a current-voltage converter, based on an operational amplifier with very low input current, a high precision ADC, a radio controlled data acquisition unit and the computer-based control, visualization and storage. The precision is of the order of a tenth of picoampers and it can measure currents between electrodes at potentials up to 8 kV. The system is battery powered and a number of strategies have been implemented to limit the power consumption. The system is designed for multichannel applications, up to 256 parallel channels. The overall implementation is cost-effective to make the availability of multichannel setups easily affordable. The design, implementation and performance of the picoammeter system are described in detail as well as a an application: the measurement of ion backflow in MPGD-based photon detectors.
The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1 consists in a large-size hybrid MPGD multilayer layout combining two layers of Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the Thick-GEMs are segm
Particle IDentification (PID) is a central requirement of the experiments at the future EIC. Hadron PID at high momenta by RICH techniques requires the use of low density gaseous radiators, where the challenge is the limited length of the radiator re
The novel MPGD-based photon detectors of COMPASS RICH-1 consist of large-size hybrid MPGDs with multi-layer architecture including two layers of Thick-GEMs and a bulk resistive MicroMegas. The top surface of the first THGEM is coated with a CsI film
A systematic study is performed to measure the ion backflow fraction of the GEM detectors. The effects of different voltage configurations and Ar/CO_2 gas mixtures, in ratios of 70:30, 80:20 and 90:10, on positive ion fraction are investigated in det
The design of a Ring Imaging CHerenkov (RICH) detector for the identification of high momentum particles at the future Electron Ion Collider (EIC) is extremely challenging by using current technology. Compact collider setups impose to construct RICH