ترغب بنشر مسار تعليمي؟ اضغط هنا

Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system phi Persei

117   0   0.0 ( 0 )
 نشر من قبل Abel Schootemeijer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stripped-envelope stars (SESs) form in binary systems after losing mass through Roche-lobe overflow. They bear astrophysical significance as sources of UV and ionizing radiation in older stellar populations and, if sufficiently massive, as stripped supernova progenitors. Binary evolutionary models predict them to be common, but only a handful of subdwarfs (i.e., SESs) with B-type companions are known. This could be the result of observational biases hindering detection, or an incorrect understanding of binary evolution. We reanalyze the well-studied post-interaction binary phi Persei. Recently, new data improved the orbital solution of the system, which contains a ~1.2 Msun SES and a rapidly rotating ~9.6 Msun Be star. We compare with an extensive grid of evolutionary models using a Bayesian approach and find initial masses of the progenitor of 7.2+/-0.4 Msun for the SES and 3.8+/-0.4 Msun for the Be star. The system must have evolved through near-conservative mass transfer. These findings are consistent with earlier studies. The age we obtain, 57+/-9 Myr, is in excellent agreement with the age of the alpha Persei cluster. We note that neither star was initially massive enough to produce a core-collapse supernova, but mass exchange pushed the Be star above the mass threshold. We find that the subdwarf is overluminous for its mass by almost an order of magnitude, compared to the expectations for a helium core burning star. We can only reconcile this if the subdwarf is in a late phase of helium shell burning, which lasts only 2-3% of the total lifetime as a subdwarf. This could imply that up to ~50 less evolved, dimmer subdwarfs exist for each system similar to phi Persei. Our findings can be interpreted as a strong indication that a substantial population of SESs indeed exists, but has so far evaded detection because of observational biases and lack of large-scale systematic searches.

قيم البحث

اقرأ أيضاً

The rapidly rotating Be star phi Persei was spun up by mass and angular momentum transfer from a now stripped-down, hot subdwarf companion. Here we present the first high angular resolution images of phi Persei made possible by new capabilities in lo ngbaseline interferometry at near-IR and visible wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the CHARA Array. Additional MIRC-only observations were performed to track the orbital motion of the companion, and these were fit together with new and existing radial velocity measurements of both stars to derive the complete orbital elements and distance. The hot subdwarf companion is clearly detected in the near-IR data at each epoch of observation with a flux contribution of 1.5% in the H band, and restricted fits indicate that its flux contribution rises to 3.3% in the visible. A new binary orbital solution is determined by combining the astrometric and radial velocity measurements. The derived stellar masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf secondary, respectively. The inferred distance (186 +- 3 pc), kinematical properties, and evolutionary state are consistent with membership of phi Persei in the alpha Per cluster. From the cluster age we deduce significant constraints on the initial masses and evolutionary mass transfer processes that transformed the phi Persei binary system. The interferometric data place strong constraints on the Be disk elongation, orientation, and kinematics, and the disk angular momentum vector is coaligned with and has the same sense of rotation as the orbital angular momentum vector. The VEGA visible continuum data indicate an elongated shape for the Be star itself, due to the combined effects of rapid rotation, partial obscuration of the photosphere by the circumstellar disk, and flux from the bright inner disk.
We present the complete sample of stripped-envelope supernova (SN) spectra observed by the Lick Observatory Supernova Search (LOSS) collaboration over the last three decades: 888 spectra of 302 SNe, 652 published here for the first time, with 384 spe ctra (of 92 SNe) having photometrically-determined phases. After correcting for redshift and Milky Way dust reddening and reevaluating the spectroscopic classifications for each SN, we construct mean spectra of the three major spectral subtypes (Types IIb, Ib, and Ic) binned by phase. We compare measures of line strengths and widths made from this sample to the results of previous efforts, confirming that O I {lambda}7774 absorption is stronger and found at higher velocity in Type Ic SNe than in Types Ib or IIb SNe in the first 30 days after peak brightness, though the widths of nebular emission lines are consistent across subtypes. We also highlight newly available observations for a few rare subpopulations of interest.
We present spectroscopic observations of the Be/X-ray binary X Per obtained during the period December 2017 - January 2020 (MJD~58095 - MJD~58865). In December 2017 the $Halpha$, $Hbeta$, and HeI 6678 emission lines were symmetric with violet-to-red peak ratio $V/R approx 1$. During the first part of the period (December 2017 - August 2018) the V/R-ratio decreased to 0.5 and the asymmetry developed simultaneously in all three lines. In September 2018, a third component with velocity $approx 250$~km~s$^{-1}$ appeared on the red side of the HeI line profile. Later this component emerged in $Hbeta$, accompanied by the appearance of a red shoulder in $Halpha$. Assuming that it is due to an eccentric wave in the circumstellar disc, we find that the eccentric wave appeared first in the innermost part of the disc, it spreads out with outflowing velocity $v_{wave} approx 1.1 pm 0.2 $~km~s$^{-1}$, and the eccentricity of the eccentric wave is $e_{wave} approx 0.29 pm 0.07$. A detailed understanding of the origin of such eccentricities would have applications to a wide range of systems from planetary rings to AGNs.
Massive binaries that merge as compact objects are the progenitors of gravitational-wave sources. Most of these binaries experience one or more phases of mass transfer, during which one of the stars loses part or all of its outer envelope and becomes a stripped-envelope star. The evolution of the size of these stripped stars is crucial in determining whether they experience further interactions and their final fate. We present new calculations of stripped-envelope stars based on binary evolution models computed with MESA. We use these to investigate their radius evolution as a function of mass and metallicity. We further discuss their pre-supernova observable characteristics and potential consequences of their evolution on the properties of supernovae from stripped stars. At high metallicity we find that practically all of the hydrogen-rich envelope is removed, in agreement with earlier findings. Only progenitors with initial masses below 10Msun expand to large radii (up to 100Rsun), while more massive progenitors stay compact. At low metallicity, a substantial amount of hydrogen remains and the progenitors can, in principle, expand to giant sizes (> 400Rsun), for all masses we consider. This implies that they can fill their Roche lobe anew. We show that the prescriptions commonly used in population synthesis models underestimate the stellar radii by up to two orders of magnitude. We expect that this has consequences for the predictions for gravitational-wave sources from double neutron star mergers, in particular for their metallicity dependence.
Because most massive stars have been or will be affected by a companion during the course of their evolution, we cannot afford to neglect binaries when discussing the progenitors of supernovae and GRBs. Analyzing linear polarization in the emission l ines of close binary systems allows us to probe the structures of these systems winds and mass flows, making it possible to map the complex morphologies of the mass loss and mass transfer structures that shape their subsequent evolution. In Wolf-Rayet (WR) binaries, line polarization variations with orbital phase distinguish polarimetric signatures arising from lines that scatter near the stars from those that scatter far from the orbital plane. These far-scattering lines may form the basis for a binary line-effect method of identifying rapidly rotating WR stars (and hence GRB progenitor candidates) in binary systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا