ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of charge ordering on the electrical properties and magnetoresistance of manganites

53   0   0.0 ( 0 )
 نشر من قبل Mahrous Ahmed
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mahrous R. Ahmed




اسأل ChatGPT حول البحث

The Monte Carlo Ferromagnetic Ising model was used to study the electrical properties of manganese oxides due to the charge ordering phase occurring at doping, x = 0.5. The half-doped manganites have an insulator antiferromagnetic ground state. We calculated the internal energy, specific heat, resistivity and the magneto-resistance, MR, with parallel and anti-parallel applied magnetic fields. Our simulation reveals that the resistivity decreases exponentially and the electric current increases with increasing temperature according the free charge increase, to transport from an insulator to conductor phase. The magnetoresistance has negative small values with parallel magnetic field but has positive high values with unti-parallel magnetic field. The obtained semiconductor-metal transition behavior candidates the half-doped manganites to be very good semiconductors diode junctions.



قيم البحث

اقرأ أيضاً

282 - S. Dong , S. Dai , X.Y. Yao 2005
The charge order of CE phase in half-doped manganites is studied, based on an argument that the charge-ordering is caused by the Jahn-Teller distortions of MnO6 octahedra rather than Coulomb repulsion between electrons. The uantitative calculation on the ferromagnetic zigzag chain as the basic structure unit of CE phase within the framework of two-orbital double exchange model including Jahn-Teller effect is performed, and it is shown that the charge-disproportionation of Mn cations in the charge-ordered CE phase is less than 13%. In addition, we predict the negative charge-disproportionation once the Jahn-Teller effect is weak enough.
The electronic properties of many transition metal oxide systems require new ideas concerning the behaviour of electrons in solids for their explanation. A recent example, subsequent to that of cuprate superconductors, is of rare earth manganites dop ed with alkaline earths, namely $Re_{1-x}A_x MnO_3$, which exhibit colossal magnetoresistance, metal insulator transition and many other poorly understood phenomena. Here we show that the strong Jahn Teller coupling between the twofold degenerate ($d_{x^2 -y^2}$ and $d_{3z^2 -r^2}$) $e_g$ orbitals of $Mn$ and lattice modes of vibration (of the oxygen octahedra surrounding the $Mn$ ions) dynamically reorganizes the former into a set of states (which we label $ell$) which are localized with large local lattice distortion and exponentially small intersite overlap, and another set (labelled $b$) which form a broad band. This hitherto unsuspected but microscopically inevitable $coexistence$ of radically different $ell$ and $b$ states, and their relative energies and occupation as influenced by doping $x$, temperature $T$, local Coulomb repulsion $U$ etc., underlies the unique effects seen in manganites. We present results from strong correlation calculations using the dynamical mean-field theory which accord with a variety of observations in the orbital liquid regime (say, for $0.2stackrel{<}sim x stackrel{<}sim 0.5$).We outline extensions to include intersite $ell$ coherence and spatial correlations/long range order.
242 - T. Wu , K. Liu , H. Chen 2008
We systematically study Raman spectroscopy of cleaved Na$_x$CoO$_2$ single crystals with 0.37 $leq$ x $leq$ 0.80. The Raman shift of A$_{1g}$ mode is found to be linearly dependent on Na content, while the Raman shift of E$_{1g}$ mode has an abnormal shift to high frequency around x = 0.5. The abnormal shift is ascribed to the occurrence of Na rearrangement in O1 structure. Temperature dependent Raman spectrum for x = 0.56 sample shows that Na rearrangement transition from O1 structure to H1 structure occurs around 240 K. Electronic transport and susceptibility for the sample with $x=0.56$ show a response to the Na rearrangement transition from O1 to H1 structure, and that different Na ordering pattern causes distinct physical properties. These results give a direct evidence to proved Na ordering effect on physical properties of Co-O plane.
The low-temperature Hall resistivity rho_{xy} of La_{2/3}A_{1/3}MnO_3 single crystals (where A stands for Ca, Pb and Ca, or Sr) can be separated into Ordinary and Anomalous contributions, giving rise to Ordinary and Anomalous Hall effects, respective ly. However, no such decomposition is possible near the Curie temperature which, in these systems, is close to metal-to-insulator transition. Rather, for all of these compounds and to a good approximation, the rho_{xy} data at various temperatures and magnetic fields collapse (up to an overall scale), on to a single function of the reduced magnetization m=M/M_{sat}, the extremum of this function lying at m~0.4. A new mechanism for the Anomalous Hall Effect in the inelastic hopping regime, which reproduces these scaling curves, is identified. This mechanism, which is an extension of Holsteins model for the Ordinary Hall effect in the hopping regime, arises from the combined effects of the double-exchange-induced quantal phase in triads of Mn ions and spin-orbit interactions. We identify processes that lead to the Anomalous Hall Effect for localized carriers and, along the way, analyze issues of quantum interference in the presence of phonon-assisted hopping. Our results suggest that, near the ferromagnet-to-paramagnet transition, it is appropriate to describe transport in manganites in terms of carrier hopping between states that are localized due to combined effect of magnetic and non-magnetic disorder. We attribute the qualitative variations in resistivity characteristics across manganite compounds to the differing strengths of their carrier self-trapping, and conclude that both disorder-induced localization and self-trapping effects are important for transport.
55 - X. Z. Yu , R. Mathieu , T. Arima 2007
Structural features of the charge/orbital ordering (CO/OO) in single-layered manganites Pr1-xCa1+xMnO4 have been investigated systematically by transmission electron microscopy. Analyses of electron diffraction patterns as well as dark-field images h ave revealed that the CO/OO shows a striking asymmetric behavior as the hole doping x deviates from x = 0.5. The modulation wavenumber linearly decreases with increasing x in the over-hole-doped (x > 0.5) crystals, while much less dependent on x in the under-hole-doped (x < 0.5) crystals. A temperature-induced incommensurate-commensurate crossover is observed in 0.35 < x < 0.5 and x = 0.65. The correlation length of CO/OO in x = 0.3 was proven to become shorter than that in x > 0.3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا