ترغب بنشر مسار تعليمي؟ اضغط هنا

Obscured Star Formation in the Host Galaxies of Superluminous Supernovae

82   0   0.0 ( 0 )
 نشر من قبل Bunyo Hatsukade
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of 3 GHz radio continuum observations of the 8 host galaxies of super-luminous supernovae (SLSNe) at $0.1 < z < 0.3$ by using the Karl G. Jansky Very Large Array. Four host galaxies are detected significantly, and two of them are found to have high star-formation rates (SFRs $>$ 20 $M_{odot}$ yr$^{-1}$) derived from radio emission, making them the most intensely star-forming host galaxies among SLSN host galaxies. We compare radio SFRs and optical SFRs, and find that three host galaxies have an excess in radio SFRs by a factor of $>$2, suggesting the existence of dust-obscured star formation, which cannot be traced by optical studies. Two of the three host galaxies, which are located in the galaxy main sequence based on optical SFRs, are found to be above the main sequence based on their radio SFRs. This suggests a higher fraction of starburst galaxies in SLSN hosts than estimated in previous studies. We calculate extinction from the ratio between radio SFRs and dust-uncorrected optical SFRs and find that the hosts are on the trend of increasing extinction with metallicity, which is consistent with the relation in local star-forming galaxies. We also place a constraint on a pulsar-driven SN model, which predicts quasi-steady synchrotron radio emission.



قيم البحث

اقرأ أيضاً

Using a sample of nearby spiral galaxies hosting 185 supernovae (SNe) Ia, we perform a comparative analysis of the locations and light curve decline rates $(Delta m_{15})$ of normal and peculiar SNe Ia in the star formation deserts (SFDs) and beyond. To accomplish this, we present a simple visual classification approach based on the UV/H$alpha$ images of the discs of host galaxies. We demonstrate that, from the perspective of the dynamical timescale of the SFD, where the star formation (SF) is suppressed by the bar evolution, the $Delta m_{15}$ of SN Ia and progenitor age can be related. The SFD phenomenon gives an excellent possibility to separate a subpopulation of SN Ia progenitors with the ages older than a few Gyr. We show, for the first time, that the SFDs contain mostly faster declining SNe Ia $(Delta m_{15} > 1.25)$. For the galaxies without SFDs, the region within the bar radius, and outer disc contain mostly slower declining SNe Ia. To better constrain the delay times of SNe Ia, we encourage new studies (e.g. integral field observations) using the SFD phenomenon on larger and more robust datasets of SNe Ia and their host galaxies.
We present Hubble Space Telescope (HST) WFC3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass with the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ~ -14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution (SED) fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ~30% of SLSNe-II arising from galaxies fainter than Mn I R ~ -14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.
Due to their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow pinpointing star formation in galaxies independently of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate the star-formatio n history over cosmic time. About half of the optical afterglows of long-duration GRBs are missed due to dust extinction, and are primarily located in the most massive GRB hosts. In order to understand this bias it is important to investigate the amount of obscured star-formation in these GRB host galaxies. Radio emission of galaxies correlates with star-formation, but does not suffer extinction as do the optical star-formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-/optical-based star-formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any star-formation-related radio emission in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We do detect radio emission from the position of GRB 020819B, but argue that it is in large parts, if not all, due to afterglow contamination. Half of our sample has radio-derived SFR limits which are only a factor 2--3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust.
We present the results of the 16-cm-waveband continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host ga laxies. The 2sigma upper limits on star-formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 Msun/yr, respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB021211, our result {bf suggests the possibility} that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا