ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-spinon and holon excitations probed by resonant inelastic x-ray scattering on doped one-dimensional antiferromagnets

70   0   0.0 ( 0 )
 نشر من قبل Steven Johnston
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resonant inelastic x-ray scattering (RIXS) at the oxygen $K$-edge has recently accessed multi-spinon excitations in the one-dimensional antiferromagnet (1D-AFM) sco, where four-spinon excitations are resolved separately from the two-spinon continuum. This technique, therefore, provides new opportunities to study fractionalized quasiparticle excitations in doped 1D-AFMs. To this end, we carried out exact diagonalization studies of the doped $t$-$J$ model and provided predictions for oxygen $K$-edge RIXS experiments on doped 1D-AFMs. We show that the RIXS spectra are rich, containing distinct two- and four-spinon excitations, dispersive (anti)holon excitations, and combinations thereof. Our results highlight how RIXS complements inelastic neutron scattering experiments by accessing additional charge and spin components of fractionalized quasiparticles.

قيم البحث

اقرأ أيضاً

How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) expe riments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of Tc, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors.
Resonant inelastic x-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. Latest developments of this technique mostly aimed at improving the energy resolution and performing pola rization analysis of the scattered radiation, with a great impact on the interpretation and applicability of RIXS. Instead, this article focuses on the sample environment and presents a setup for high-pressure low-temperature RIXS measurements of low-energy excitations. The feasibility of these experiments is proved by probing the magnetic excitations of the bilayer iridate Sr$_3$Ir$_2$O$_7$ at pressures up to 12 GPa.
A quantum spin liquid is a novel ground state that can support long-range entanglement between magnetic moments, resulting in exotic spin excitations involving fractionalized $S=frac{1}{2}$ spinons. Here, we measure the excitations in single crystals of the spin liquid candidate Zn-barlowite using resonant inelastic X-ray scattering. By analyzing the incident polarization and temperature dependences, we deduce a clear magnetic scattering contribution forming a broad continuum that surprisingly extends up to $sim$200 meV ($sim$14$J$, where $J$ is the magnetic exchange). The excitation spectrum reveals that significant contributions arise from multiple pairs of spinons and/or antispinons at high energies.
Resonant inelastic X-ray scattering (RIXS) experiments performed at the oxygen-$K$ edge on the iridate perovskites {SIOS} and {SION} reveal a sequence of well-defined dispersive modes over the energy range up to $sim 0.8$ eV. The momentum dependence of these modes and their variation with the experimental geometry allows us to assign each of them to specific collective magnetic and/or electronic excitation processes, including single and bi-magnons, and spin-orbit and electron-hole excitons. We thus demonstrated that dispersive magnetic and electronic excitations are observable at the O-$K$ edge in the presence of the strong spin-orbit coupling in the $5d$ shell of iridium and strong hybridization between Ir $5d$ and O $2p$ orbitals, which confirm and expand theoretical expectations. More generally, our results establish the utility of O-$K$ edge RIXS for studying the collective excitations in a range of $5d$ materials that are attracting increasing attention due to their novel magnetic and electronic properties. Especially, the strong RIXS response at O-$K$ edge opens up the opportunity for investigating collective excitations in thin films and heterostructures fabricated from these materials.
We analyze the resonant inelastic x-ray scattering (RIXS) spectra at the Cu and Ni K edges in La2CuO4 and La2NiO4, respectively. We make use of the Keldysh-Green-function formalism, in which the RIXS intensity is described by a product of incident-ph oton-dependent factor and density-density correlation function in the 3d states. The former factor is calculated using the $4p$ density of states given by an ab initio band structure calculation and the latter using the wavefunctions given by a Hartree-Fock calculation of a multi-orbital tight-binding model. The initial state is described within the Hartree-Fock approximation and the electron correlations on charge excitations are treated within the random phase approximation. The calculated RIXS spectra well reproduce several characteristic features in the experiments. Although several groups have interpreted the RIXS peaks as bound excitons, our calculation indicates that they should be interpreted as band-to-band excitations augmented by electron correlations. The difference in RIXS spectra between La2CuO4 and La2NiO4 is explained from this point of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا