ترغب بنشر مسار تعليمي؟ اضغط هنا

Propagation of chaos for topological interactions

39   0   0.0 ( 0 )
 نشر من قبل Pierre Degond
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a $N$-particle model describing an alignment mechanism due to a topological interaction among the agents. We show that the kinetic equation, expected to hold in the mean-field limit $N to infty$, as following from the previous analysis in [A. Blanchet, P. Degond, Topological interactions in a Boltzmann-type framework, J. Stat. Phys., 163 (2016), pp. 41-60.] can be rigorously derived. This means that the statistical independence (propagation of chaos) is indeed recovered in the limit, provided it is assumed at time zero.

قيم البحث

اقرأ أيضاً

A necessary condition for the emergence of chaos is given. It is well known that the emergence of chaos requires a positive exponent which entails diverging trajectories. Here we show that this is not enough. An additional necessary condition for the emergence of chaos in the region where the trajectory of the system goes through, is that the product of the maximal positive exponent times the duration in which the system configuration point stays in the unstable region should exceed unity. We give a theoretical analysis justifying this result and a few examples.
We consider infinite-dimensional diffusions where the interaction between the coordinates has a finite extent both in space and time. In particular, it is not supposed to be smooth or Markov. The initial state of the system is Gibbs, given by a stron g summable interaction. If the strongness of this initial interaction is lower than a suitable level, and if the dynamical interaction is bounded from above in a right way, we prove that the law of the diffusion at any time t is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion in space uniformly in time of the Girsanov factor coming from the dynamics and exponential ergodicity of the free dynamics to an equilibrium product measure.
This work concerns with the description of the topological phases of band insulators of class DIII by using the equivariant cohomology. The main result is the definition of a cohomology class for general systems of class DIII which generalizes the we ll known $mathbb{Z}_2$-invariant given by the Teo-Kane formula in the one-dimension case. In the two-dimensional case this cohomology invariant allows a complete description of the strong and weak phases. The relation with the KR-theory, the Noether-Fredholm index and the classification of Real gerbes are also discussed.
130 - Shamgar Gurevich 2009
In these notes we discuss the self-reducibility property of the Weil representation. We explain how to use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a r esult, we obtain the Hecke quantum unique ergodicity theorem for generic linear symplectomorphism $A$ of the torus $T^{2N}=R^{2N}/Z^{2N}.
82 - Junshan Lin , Hai Zhang 2021
This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence and stability of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic structure with time-reversal symmetry, the associated Zak phase (or Berry phase) may not be quantized. We investigate the existence of an interface mode which is induced by a Dirac point upon perturbation. Specifically, we establish conditions on the perturbation which guarantee the opening of a band gap around the Dirac point and the existence of an interface mode. For a periodic photonic structure with both time-reversal and inversion symmetry, the Zak phase is quantized, taking only two values $0, pi$. We show that the Zak phase is determined by the parity (even or odd) of the Bloch modes at the band edges. For a photonic structure consisting of two semi-infinite systems on the two sides of an interface with distinct topological indices, we show the existence of an interface mode inside the common gap. The stability of the mode under perturbations is also investigated. Finally, we study resonances for finite topological structures. Our results are based on the transfer matrix method and the oscillation theory for Sturm-Liouville operators. The methods and results can be extended to general topological Sturm-Liouville systems in one dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا