ﻻ يوجد ملخص باللغة العربية
The electrodynamic response of organic spin liquids with highly-frustrated triangular lattices has been measured in a wide energy range. While the overall optical spectra of these Mott insulators are governed by transitions between the Hubbard bands, distinct in-gap excitations can be identified at low temperatures and frequencies which we attribute to the quantum spin liquid state. For the strongly correlated $beta^{prime}$-EtMe$_3$-Sb-[Pd(dmit)$_2$]$_2$, we discover enhanced conductivity below $175~{rm cm}^{-1}$, comparable to the energy of the magnetic coupling $Japprox 250$ K. For $omegarightarrow 0$ these low-frequency excitations vanish faster than the charge-carrier response subject to Mott-Hubbard correlations, resulting in a dome-shape band peaked at 100~cm. Possible relations to spinons, magnons and disorder are discussed.
We have investigated low energy nuclear spin excitations in strongly correlated electron compound HoCrO$_3$. We observe clear inelastic peaks at $E = 22.18 pm 0.04$ $mu eV$ in both energy loss and gain sides. The energy of the inelastic peaks remains
We scrutinize the magnetic properties of $kappa$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl through its first-order metal-insulator transition at $T_{rm CO}=30$ K by means of $^1$H nuclear magnetic resonance (NMR). While in the metal we find Fermi-liquid behavior w
We calculate the effect of the emergent photon on threshold production of spinons in $U(1)$ Coulomb spin liquids such as quantum spin ice. The emergent Coulomb interaction modifies the threshold production cross-section dramatically, changing the wea
We have measured the intricate temperature dependence of the Co L2,3 x-ray absorption spectra (2p-3d excitations) of CoO. To allow for accurate total electron yield measurements, the material has been grown in thin film form on a metallic substrate i
Very recently we revealed a large family of triangular lattice quantum spin liquid candidates named rare-earth chalcogenides, which features a high-symmetry structure without structural/charge disorders and spin impurities, and may serve as an ideal