ﻻ يوجد ملخص باللغة العربية
While the beginning decade of the high-Tc cuprates era passed under domination of local theories, Abrikosov was one of the few who took seriously the electronic band structure of cuprates, stressing the importance of an extended Van Hove singularity near the Fermi level. These ideas have not been widely accepted that time mainly because of a lack of experimental evidence for correlation between saddle point position and superconductivity. In this short contribution, based on the detailed comparison of the electronic band structures of different families of cuprates and iron based superconductors I argue that a general mechanism of the Tc enhancement in all known high-Tc superconductors is likely related with the proximity of certain Van Hove singularities to the Fermi level. While this mechanism remains to be fully understood, one may conclude that it is not related with the electron density of states but likely with some kind of resonances caused by a proximity of the Fermi surface to topological Lifshitz transition. One may also notice that the electronic correlations often shifts the electronic bands to optimal for superconductivity positions.
Based on first principles calculations, the electronic structure of CuTeO$_4$ is discussed in the context of superconducting cuprates. Despite some significant crystallographic differences, we find that CuTeO$_4$ is similar to these cuprates, exhibit
Motivated by recent experiments on Al nanoparticles, we have studied the effects of fixed electron number and small size in nanoscale superconductors, by applying the canonical BCS theory for the attractive Hubbard model in two and three dimensions.
The recently discovered cuprate superconductor Ba$_2$CuO$_{3+delta}$ exhibits a high $T_csimeq73$K at $deltasimeq0.2$. The polycrystal grown under high pressure has a structure similar to La$_2$CuO$_4$, but with dramatically different lattice paramet
We present a phenomenological model that describes the low energy electronic structure of the cuprate high temperature superconductor Bi2Sr2CaCu2O8+x as observed by Spectroscopic Imagining Scanning Tunneling Microscopy (SI-STM). Our model is based on
The phenomenological Greens function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the res