ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental gap estimate for convex domains on sphere -- the case $n=2$

89   0   0.0 ( 0 )
 نشر من قبل Shoo Seto
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In [SWW16, HW17] it is shown that the difference of the first two eigenvalues of the Laplacian with Dirichlet boundary condition on convex domain with diameter $D$ of sphere $mathbb S^n$ is $geq 3 frac{pi^2}{D^2}$ when $n geq 3$. We prove the same result when $n=2$. In fact our proof works for all dimension. We also give an asymptotic expansion of the first and second Dirichlet eigenvalues of the model in [SWW16].



قيم البحث

اقرأ أيضاً

In their celebrated work, B. Andrews and J. Clutterbuck proved the fundamental gap (the difference between the first two eigenvalues) conjecture for convex domains in the Euclidean space and conjectured similar results holds for spaces with constant sectional curvature. We prove the conjecture for the sphere. Namely when $D$, the diameter of a convex domain in the unit $S^n$ sphere, is $le frac{pi}{2}$, the gap is greater than the gap of the corresponding $1$-dim sphere model. We also prove the gap is $ge 3frac{pi^2}{D^2}$ when $n ge 3$, giving a sharp bound. As in Andrews-Clutterbucks proof of the fundamental gap, the key is to prove a super log-concavity of the first eigenfunction.
175 - Jon Wolfson 2012
Adapting the method of Andrews-Clutterbuck we prove an eigenvalue gap theorem for a class of non symmetric second order linear elliptic operators on a convex domain in euclidean space. The class of operators includes the Bakry-Emery laplacian with po tential and any operator with second order term the laplacian whose first order terms have coefficients with compact support in the open domain. The eigenvalue gap is bounded below by the gap of an associated Sturm-Liouville problem on a closed interval.
In the previous work [35], the second and third authors established a Bochner type formula on Alexandrov spaces. The purpose of this paper is to give some applications of the Bochner type formula. Firstly, we extend the sharp lower bound estimates of spectral gap, due to Chen-Wang [9, 10] and Bakry-Qian [6], from smooth Riemannian manifolds to Alexandrov spaces. As an application, we get an Obata type theorem for Alexandrov spaces. Secondly, we obtain (sharp) Li-Yaus estimate for positve solutions of heat equations on Alexandrov spaces.
193 - Jeff Streets 2010
We investigate the low-energy behavior of the gradient flow of the $L^2$ norm of the Riemannian curvature on four-manifolds. Specifically, we show long time existence and exponential convergence to a metric of constant sectional curvature when the in itial metric has positive Yamabe constant and small initial energy.
We study a fractional conformal curvature flow on the standard unit sphere and prove a perturbation result of the fractional Nirenberg problem with fractional exponent $sigma in (1/2,1)$. This extends the result of Chen-Xu (Invent. Math. 187, no. 2, 395-506, 2012) for the scalar curvature flow on the standard unit sphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا