ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of Poisson arrival processes under linear models

56   0   0.0 ( 0 )
 نشر من قبل Michael Moore
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the problem of estimating the parameters of a Poisson arrival process where the rate function is assumed to lie in the span of a known basis. Our goal is to estimate the basis expansions coefficients given a realization of this process. We establish novel guarantees concerning the accuracy achieved by the maximum likelihood estimate. Our initial result is near-optimal, with the exception of an undesirable dependence on the dynamic range of the rate function. We then show how to remove this dependence through a process of noise regularization, which results in an improved bound. We conjecture that a similar guarantee should be possible when using a more direct (deterministic) regularization scheme. We conclude with a discussion of practical applications and an empirical examination of the proposed regularization schemes.



قيم البحث

اقرأ أيضاً

In the field of radar parameter estimation, Cramer-Rao bound (CRB) is a commonly used theoretical limit. However, CRB is only achievable under high signal-to-noise (SNR) and does not adequately characterize performance in low and medium SNRs. In this paper, we employ the thoughts and methodologies of Shannons information theory to study the theoretical limit of radar parameter estimation. Based on the posteriori probability density function of targets parameters, joint range-scattering information and entropy error (EE) are defined to evaluate the performance. The closed-form approximation of EE is derived, which indicates that EE degenerates to the CRB in the high SNR region. For radar ranging, it is proved that the range information and the entropy error can be achieved by the sampling a posterior probability estimator, whose performance is entirely determined by the theoretical posteriori probability density function of the radar parameter estimation system. The range information and the entropy error are simulated with sampling a posterior probability estimator, where they are shown to outperform the CRB as they can be achieved under all SNR conditions
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges to the channel estimation problem, and the sparse prior on the channel coefficient vector $boldsymbol x$ in the angle domain is often used to compensate for the information lost during quantization. By interpreting the sparse prior from a probabilistic perspective, we can assume $boldsymbol x$ follows certain sparse prior distribution and recover it using approximate message passing (AMP). However, the distribution parameters are unknown in practice and need to be estimated. Due to the increased computational complexity in the quantization noise model, previous works either use an approximated noise model or manually tune the noise distribution parameters. In this paper, we treat both signals and parameters as random variables and recover them jointly within the AMP framework. The proposed approach leads to a much simpler parameter estimation method, allowing us to work with the quantization noise model directly. Experimental results show that the proposed approach achieves state-of-the-art performance under various noise levels and does not require parameter tuning, making it a practical and maintenance-free approach for channel estimation.
We investigate the reliability and security of the ambient backscatter (AmBC) non-orthogonal multiple access (NOMA) systems, where the source aims to communication with two NOMA users in the presence of an eavesdropper. We consider a more practical c ase that nodes and backscatter device (BD) suffer from in-phase and quadrature-phase imbalance (IQI). More specifically, exact analytical expressions for the outage probability (OP) and the intercept probability (IP) are derived in closedform. Moreover, the asymptotic behaviors and corresponding diversity orders for the OP are discussed. Numerical results show that: 1) Although IQI reduces the reliability, it can enhance the security. 2) Compared with the traditional orthogonal multiple access (OMA) system, the AmBC-NOMA system can obtain better reliability when the signal-to-noise (SNR) ratio is low; 3) There are error floors for the OP because of the reflection coefficient b{eta} .
186 - Jingbo Tan , Linglong Dai 2021
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communica tion. However, accurate wideband channel estimation is challenging in THz massive MIMO systems. The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect. In this paper, we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation. Specifically, a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect. Based on the analysis, we define a series of index sets called as beam split patterns, which are proved to have a one-to-one match to different physical channel directions. Inspired by this one-to-one match, we propose to estimate the physical channel direction by exploiting beam split patterns at first. Then, the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window. This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction. The above estimation procedure will be repeated path by path until all path components are estimated. The proposed scheme exploits the wideband channel property implied by the beam split effect, which can significantly improve the channel estimation accuracy. Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.
This paper proposes a belief propagation (BP)-based algorithm for sequential detection and estimation of multipath components (MPCs) parameters based on radio signals. Under dynamic channel conditions with moving transmitter and/or receiver, the numb er of MPCs reflected from visible geometric features, the MPC dispersion parameters (delay, angle, Doppler frequency, etc), and the number of false alarm contributions are unknown and time-varying. We develop a Bayesian model for sequential detection and estimation of MPC dispersion parameters, and represent it by a factor graph enabling the use of BP for efficient computation of the marginal posterior distributions. At each time instance, a snapshot-based channel estimator provides parameter estimates of a set of MPCs which are used as noisy measurements by the proposed BP-based algorithm. It performs joint probabilistic data association, estimation of the time-varying MPC parameters, and the mean number of false alarm measurements by means of the sum-product algorithm rules. The results using synthetic measurements show that the proposed algorithm is able to cope with a high number of false alarm measurements originating from the snapshot-based channel estimator and to sequentially detect and estimate MPCs parameters with very low signal-to-noise ratio (SNR). The performance of the proposed algorithm compares well to existing algorithms for high SNR MPCs, but significantly it outperforms them for medium or low SNR MPCs. In particular, we show that our algorithm outperforms the Kalman enhanced super resolution tracking (KEST) algorithm, a state-of-the-art sequential channel parameters estimation method. Furthermore, results with real radio measurements demonstrate the excellent performance of the algorithm in realistic and challenging scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا