ﻻ يوجد ملخص باللغة العربية
In this paper we discuss a natural extension of infinite discrete partition-of-unity copulas which were recently introduced in the literature to continuous partition of copulas with possible applications in risk management and other fields. We present a general simple algorithm to generate such copulas on the basis of the empirical copula from high-dimensional data sets. In particular, our constructions also allow for an implementation of positive tail dependence which sometimes is a desirable property of copula modelling, in particular for internal models under Solvency II.
We present a constructive and self-contained approach to data driven infinite partition-of-unity copulas that were recently introduced in the literature. In particular, we consider negative binomial and Poisson copulas and present a solution to the p
We construct new multivariate copulas on the basis of a generalized infinite partition-of-unity approach. This approach allows - in contrast to finite partition-of-unity copulas - for tail-dependence as well as for asymmetry. A possibility of fitting
We present a constructive and self-contained approach to data driven general partition-of-unity copulas that were recently introduced in the literature. In particular, we consider Bernstein-, negative binomial and Poisson copulas and present a soluti
We present a constructive approach to Bernstein copulas with an admissible discrete skeleton in arbitrary dimensions when the underlying marginal grid sizes are smaller than the number of observations. This prevents an overfitting of the estimated de
The central idea of the paper is to present a general simple patchwork construction principle for multivariate copulas that create unfavourable VaR (i.e. Value at Risk) scenarios while maintaining given marginal distributions. This is of particular i