ترغب بنشر مسار تعليمي؟ اضغط هنا

Q#: Enabling scalable quantum computing and development with a high-level domain-specific language

106   0   0.0 ( 0 )
 نشر من قبل Martin Roetteler
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computing exploits quantum phenomena such as superposition and entanglement to realize a form of parallelism that is not available to traditional computing. It offers the potential of significant computational speed-ups in quantum chemistry, materials science, cryptography, and machine learning. The dominant approach to programming quantum computers is to provide an existing high-level language with libraries that allow for the expression of quantum programs. This approach can permit computations that are meaningless in a quantum context; prohibits succinct expression of interaction between classical and quantum logic; and does not provide important constructs that are required for quantum programming. We present Q#, a quantum-focused domain-specific language explicitly designed to correctly, clearly and completely express quantum algorithms. Q# provides a type system, a tightly constrained environment to safely interleave classical and quantum computations; specialized syntax, symbolic code manipulation to automatically generate correct transformations of quantum operations, and powerful functional constructs which aid composition.



قيم البحث

اقرأ أيضاً

Fault-tolerant quantum computation promises to solve outstanding problems in quantum chemistry within the next decade. Realizing this promise requires scalable tools that allow users to translate descriptions of electronic structure problems to optim ized quantum gate sequences executed on physical hardware, without requiring specialized quantum computing knowledge. To this end, we present a quantum chemistry library, under the open-source MIT license, that implements and enables straightforward use of state-of-art quantum simulation algorithms. The library is implemented in Q#, a language designed to express quantum algorithms at scale, and interfaces with NWChem, a leading electronic structure package. We define a standardized schema for this interface, Broombridge, that describes second-quantized Hamiltonians, along with metadata required for effective quantum simulation, such as trial wavefunction ansatzes. This schema is generated for arbitrary molecules by NWChem, conveniently accessible, for instance, through Docker containers and a recently developed web interface EMSL Arrows. We illustrate use of the library with various examples, including ground- and excited-state calculations for LiH, H$_{10}$, and C$_{20}$ with an active-space simplification, and automatically obtain resource estimates for classically intractable examples.
We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-i ns for circuit drawing and resource estimation. We introduce our Python-embedded domain-specific language, present the features, and provide example implementations for quantum algorithms. The framework allows testing of quantum algorithms through simulation and enables running them on actual quantum hardware using a back-end connecting to the IBM Quantum Experience cloud service. Through extension mechanisms, users can provide back-ends to further quantum hardware, and scientists working on quantum compilation can provide plug-ins for additional compilation, optimization, gate synthesis, and layout strategies.
The ANTAREX project relies on a Domain Specific Language (DSL) based on Aspect Oriented Programming (AOP) concepts to allow applications to enforce extra functional properties such as energy-efficiency and performance and to optimize Quality of Servi ce (QoS) in an adaptive way. The DSL approach allows the definition of energy-efficiency, performance, and adaptivity strategies as well as their enforcement at runtime through application autotuning and resource and power management. In this paper, we present an overview of the key outcome of the project, the ANTAREX DSL, and some of its capabilities through a number of examples, including how the DSL is applied in the context of the project use cases.
We review some of the features of the ProjectQ software framework and quantify their impact on the resulting circuits. The concise high-level language facilitates implementing even complex algorithms in a very time-efficient manner while, at the same time, providing the compiler with additional information for optimization through code annotation - so-called meta-instructions. We investigate the impact of these annotations for the example of Shors algorithm in terms of logical gate counts. Furthermore, we analyze the effect of different intermediate gate sets for optimization and how the dimensions of the resulting circuit depend on a smart choice thereof. Finally, we demonstrate the benefits of a modular compilation framework by implementing mapping procedures for one- and two-dimensional nearest neighbor architectures which we then compare in terms of overhead for different problem sizes.
We propose a novel scheme of solid state realization of a quantum computer based on single spin enhancement mode quantum dots as building blocks. In the enhancement quantum dots, just one electron can be brought into initially empty dot, in contrast to depletion mode dots based on expelling of electrons from multi-electron dots by gates. The quantum computer architectures based on depletion dots are confronted by several challenges making scalability difficult. These challenges can be successfully met by the approach based on ehnancement mode, capable of producing square array of dots with versatile functionalities. These functionalities allow transportation of qubits, including teleportation, and error correction based on straightforward one- and two-qubit operations. We describe physical properties and demonstrate experimental characteristics of enhancement quantum dots and single-electron transistors based on InAs/GaSb composite quantum wells. We discuss the materials aspects of quantum dot quantum computing, including the materials with large spin splitting such as InAs, as well as perspectives of enhancement mode approach in materials such as Si.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا