ترغب بنشر مسار تعليمي؟ اضغط هنا

Interface-generated spin currents

248   0   0.0 ( 0 )
 نشر من قبل Vivek Amin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport calculations based on ab-initio band structures reveal large interface-generated spin currents at Co/Pt, Co/Cu, and Pt/Cu interfaces. These spin currents are driven by in-plane electric fields but flow out-of-plane, and can have similar strengths to spin currents generated by the spin Hall effect in bulk Pt. Each interface generates spin currents with polarization along $bf{hat{z}} times bf{E}$, where $bf{hat{z}}$ is the interface normal and $bf{E}$ denotes the electric field. The Co/Cu and Co/Pt interfaces additionally generate spin currents with polarization along $bf{hat{m}} times (bf{hat{z}} times bf{E})$, where $bf{hat{m}}$ gives the magnetization direction of Co. The latter spin polarization is controlled by---but not aligned with---the magnetization, providing a novel mechanism for generating spin torques in magnetic trilayers.

قيم البحث

اقرأ أيضاً

The spin currents generated by spin-orbit coupling (SOC) in the nonmagnetic metal layer or at the interface with broken inversion symmetry are of particular interest and importance. Here, we have explored the spin current generation mechanisms throug h the spin-orbit torques (SOTs) measurements in the Ru/Fe heterostructures with weak perpendicular magnetic anisotropy (PMA). Although the spin Hall angle (SHA) of Ru is smaller than that in Pt, Ta or W, reversible SOT in Ru/Fe heterostructures can still be realized. Through non-adiabatic harmonic Hall voltage measurements and macrospin simulation, the effective SHA in Ru/Fe heterostructures is compared with Pt. Moreover, we also explore that the spin current driven by interface strongly depends on the electrical conductivities. Our results suggest a new method for efficiently generating finite spin currents in ferromagnet/nonmagnetic metal bilayers, which establishes new opportunities for fundamental study of spin dynamics and transport in ferromagnetic systems.
Magnetic droplets are dynamical solitons that can be generated by locally suppressing the dynamical damping in magnetic films with perpendicular anisotropy. To date, droplets have been observed only in nanocontact spin-torque oscillators operated by spin-polarized electrical currents. Here, we experimentally demonstrate that magnetic droplets can be nucleated and sustained by pure spin currents in nanoconstriction-based spin Hall devices. Micromagnetic simulations support our interpretation of the data, and indicate that in addition to the stationary droplets, propagating solitons can be also generated in the studied system, which can be utilized for the information transmission in spintronic applications.
Spin-orbit coupling enables charge currents to give rise to spin currents and vice versa, which has applications in non-volatile magnetic memories, miniature microwave oscillators, thermoelectric converters and Terahertz devices. In the past two deca des, a considerable amount of research has focused on electrical spin current generation in different types of nonmagnetic materials. However, electrical spin current generation in ferromagnetic materials has only recently been actively investigated. Due to the additional symmetry breaking by the magnetization, ferromagnetic materials generate spin currents with different orientations of spin direction from those observed in nonmagnetic materials. Studies centered on ferromagnets where spin-orbit coupling plays an important role in transport open new possibilities to generate and detect spin currents. We summarize recent developments on this subject and discuss unanswered questions in this emerging field.
At the interface between a nonmagnetic metal (NM) and a ferromagnetic insulator (FI) spin current can interact with the magnetization, leading to a modulation of the spin current. The interfacial exchange field at these FI-NM interfaces can be probed by placing the interface in contact with the spin transport channel of a lateral spin valve (LSV) device and observing additional spin relaxation processes. We study interfacial exchange field in lateral spin valve devices where Cu spin transport channel is in proximity with ferromagnetic insulator EuS (EuS-LSV) and yttrium iron garnet Y$_3$Fe$_5$O$_{12}$ (YIG-LSV). The spin signals were compared with reference lateral spin valve devices fabricated on nonmagnetic Si/SiO$_2$ substrate with MgO or AlO$_x$ capping. The nonlocal spin valve signal is about 4 and 6 times lower in the EuS-LSV and YIG-LSV, respectively. The suppression in the spin signal has been attributed to enhanced surface spin-flip probability at the Cu-EuS (or Cu-YIG) interface due to interfacial spin-orbit field. Besides spin signal suppression we also found widely observed low temperature peak in the spin signal at $T sim$30 K is shifted to higher temperature in the case of devices in contact with EuS or YIG. Temperature dependence of spin signal for different injector-detector distances reveal fluctuating exchange field at these interfaces cause additional spin decoherence which limit spin relaxation time in addition to conventional sources of spin relaxation. Our results show that temperature dependent measurement with pure spin current can be used to probe interfacial exchange field at the ferromagnetic insulator-nonmagnetic metal interface.
First principles calculations show that electric fields applied to ferromagnets generate spin currents flowing perpendicularly to the electric field. Reduced symmetry in these ferromagnets enables a wide variety of such spin currents. However, the to tal spin current is approximately the sum of a magnetization-independent spin Hall current and an anisotropic spin anomalous Hall current. Intrinsic spin currents are not subject to dephasing, enabling their spin polarizations to be misaligned with the magnetization, which enables the magnetization-independent spin Hall effect. The spin Hall conductivity and spin anomalous Hall conductivities of transition metal ferromagnets are comparable to those found in heavy metals, opening new avenues for efficient spin current generation in spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا